
Telecom Paris
COMELEC Department

AVATAR Model-Checker

Document Manager Contributors Checked by
Name Ludovic APVRILLE Ludovic APVRILLE
Contact ludovic.apvrille@telecom-

paris.fr
Alessandro TEMPIA
CALVINO

Date September 7, 2020

Page 1



Contents
1 Preface 3

1.1 Table of Versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Table of References and Applicable Documents . . . . . . . . . . . . . . . 3
1.3 Acronyms and glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 A First Example 4
2.1 Getting the example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Understanding the model . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 PressureSensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 MainController . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.3 AlarmManager . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.4 AlarmActuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Reachability and liveness . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Safety properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Verification Guide 9
3.1 CTL query syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Traces generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Concurrency behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 AVATAR Model-Checker 15
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Reachability Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Main algorithm preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 The Main Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Reachability of States 19
5.1 Deadlocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Reinitialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Safety and Liveness 19
6.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Handling of safety and liveness properties by the AVATAR model checker . 19
6.3 Handling combinatory explosion . . . . . . . . . . . . . . . . . . . . . . . 21

7 Internal action loops 21

8 Verification traces 22

Page 2



1 Preface

1.1 Table of Versions

Version Date Description & Rationale of Modifications Sections
Modified

1.0 23/03/2020 First draft

1.2 Table of References and Applicable Documents

Reference Title & Edition Author or
Editor

Year

1.3 Acronyms and glossary

Term Description

1.4 Executive Summary
This document describes how the AVATAR model checker of TTool works. This docu-
ment is divided mainly into two parts. The first one is the user guide on how to use the
model-checker. The second one explains the data structure used to represent the models, the
algorithm for reachability graph generation, and the properties that can be verified.

Page 3



2 A First Example
This very first example explains how to verify reachability, liveness, and safety properties
using the AVATAR model-checker on a design model.

2.1 Getting the example
Be sure to get the latest version of TTool including the remote loading of models (June 2020
and after). Do: File, Open from TTool repository, and select "PressureController.xml".
Then, open the design panel to view the AVATAR design model.

2.2 Understanding the model
The Pressure Controller is built upon a set of blocks representing the system itself, and two
blocks representing the environment (the pressure sensor, and the alarm actuator), see Figure
1.

Figure 1: Pressure Controller System: Avatar Design

2.2.1 PressureSensor

The pressure sensor (see Figure 2) monitors the pressure with a period of 20 units of time.
In the first branch, "IsInCode" method is not executed when the model is considered for
functional simulation or formal verification. Indeed, in our case, the "branch" boolean is
set to false by default, so the random command is executed (and not the readingPressure()
method). The random value, between 18 and 21, is sent every period of time to the main
controller.

2.2.2 MainController

The main controller (see Figure 3) receives the pressure value from the pressure sensor. If
the value is greater equal than a threshold, set at 20, a high pressure signal is sent to the
alarm manager.

2.2.3 AlarmManager

The alarm manager (see Figure 4) activates an alarm when the controller senses a high
pressure. The alarm is deactivated after "alarmDuration", controlled by a timer, if no other
high pressure signals are sensed in the meanwhile.

Page 4



Figure 2: Pressure Sensor

Figure 3: Main Controller

2.2.4 AlarmActuator

The alarm actuator may receive on and off signals activating and deactivating the alarm.

2.3 Reachability and liveness
To activate the reachability and liveness check for specific states, we need to go to the
correspondant block state machine, right click on a state or a signal and select "Check
for Reachability / Liveness". For instance, let’s do that on the AlarmIsOn state in the
AlarmManager state machine. After this operation, the letters R and L in grey will appear

Page 5



Figure 4: AlarmManager

next to the state (see Figure 5) to confirm that the state is selected for the reachability and
liveness check. After that, we may proceed with the verification.

Figure 5: State selected for reachability and liveness check

To open the model-checker window, we must first compile the model. To do that, let’s click
on the "syntax analysis" icon and then on "check syntax". Then, we click on the "safety
verification (internal tool)" icon representing a screwdriver and a wrench crossed with the
text "RC". The following window should open (see Figure 6).
To execute the reachability and liveness check on the selected state, let’s select "Selected
states" in both Reachability and Liveness lines. Then, we can press the start button. The
text area will contain the verification report indicating if the properties are satisfied or not.
Moreover, if we go back to the AlarmManager state machine, the RL text next to the state
is now colored with green for satisfied and in red for not satisfied (see Figure 7).
In this case, the reachability is satisfied as the pressure sensor may detect a temperature
higher than the controller threshold. The liveness, instead, is not satisfied as a temperature
higher than the threshold may be never detected.

Page 6



Figure 6: Model-checker window

Figure 7: Reachability and Liveness result

If we want to simply verify the reachability and liveness property automatically for
all the states, we can select "All states" in the model-checking window.

2.4 Safety properties
We can find, write and modify safety properties in the block diagram tab inside the pink
block. The pink block can be created by clicking on the "Safety property button" as shown
in figure 8.

Figure 8: Safety properties creation

If we do a double click on the pink box, we see the safety and liveness pragmas written as a
CTL formula using UPPAAL syntax. If we press the question mark in the window, a short

Page 7



illustrated guide on how the queries work appears.

To start the CTL query verification, let’s compile again and let’s open the model-
checker window. As shown in figure 6, we want to select the checkbox "Safety pragmas"
and then we select the queries that we want to verify. In this case, let’s execute all of them.
Let’s press the start button to begin the verification. The query results are shown both in the
report field and inside the pink box in the block diagram tab (see Picture 9).

Figure 9: Safety Result

Page 8



3 Verification Guide
In this section we will explain all the features and options that are present in the AVATAR
model-checker. For a reference to the model-checking window, please refer to figure 6.

The model-checker allows to generate a reachability graph and to prove properties.
Starting from the top, the first section contains graph generations options. In particular:

• Word size: the words can be represented on 32, 16 or 8 bits.

• Do not display empty transitions as internal states: in the reachability graph gen-
eration, states are not created for empty transitions (no action, no time, no choice). In
practice, empty transition states are collapsed together. This option does not affect the
verification. Option on by default.

• Ignore concurrency between internal actions: this option allows to ignore a full
concurrency study. It is very useful to limit the state explosion of the model due
to all the concurrencies among its states. It is so suggested to keep it selected to
have a faster verification. This option, however, affects only in the leadsto study,
and the reachability graph generation. Important: basic concurrency it is evaluated
also with this optimization selected. Basic concurrency means that concurrency is
normally evaluated until states with multiple transitions, or if statement, or signals
communication are encounted. In normal usage, you should not need to deselect this
option (example in the next section 3.3). Option on by default.

• Ignore states between internal actions: This option allows to ignore intermediate
states between actions that can be directly executed. this optimization helps decreas-
ing the number of states in the reachability graph generation. If Ignore concurrency
between internal actions is not selected, this option automatically deactivated. We
suggest to keep this option selected for verification as it would not affect the result.
Option on by default.

• Limit the number of states in RG: it limits the reachability graph generation to a
fixed number of states. It is particularly useful for big models. This option is auto-
matically ignored when a verification study is selected.

• Time constraint for RG generation: it allows to stop the reachability graph genera-
tion after a fixed number of milliseconds. It is particularly useful for big models. This
option is automatically ignored when a verification study is selected.

The next section contains options for basic properties verification:

• No deadlocks: it checks that the model is deadlock free

• Reinitialization: it checks that, for all the paths, the model will eventually restart to
the initial state

• No internal action loops: it checks that in states machines, there are not possible
infinite loops which have no interractions (signal communications) with the environ-
ment (other blocks). This check helps to detect if a system stops interracting with the
environment during its execution.

Page 9



• Reachability: it checks for states reachability

• Liveness: it checks for states liveness

The next section allows us to execute safety and liveness pragmas written as a CTL formula.
Each of them can be selected or not for verification. Also, counterexample traces can be
generated for each CTL query and deadlock check. The option Generate counterexample
traces generates a trace in a text file for each pragma with a counterexample. The trace
contains all the states and transitions that lead to a counterexample step by step. Selecting
Generate counterexample AUT graphs, a displayable graph will appear in the reachability
graphs section. A detailed example is available in section 3.2.

Then, Reachability Graph Generation options is used to generate and save the
reachability graph. Moreover, it can can be saved also in "dotty" format.

3.1 CTL query syntax
The query syntax for CTL formulas, for expressions p and q, is the following:

• A[] p: property p is always true for each path (other common notation AG p)

• A<> p: property p will eventually be true for each path (other common notation AF
p)

• E[] p: there exists at least one path in which property p is always true (other common
notation EG p)

• E<> p: there exists a path in which property p will eventually be true (other common
notation EF p)

• p –> q: whenever p is true, then q will eventually be true at some subsequent moment
(other common notation G(p⇒ Fq))

Expression p and q may contain condition on states and/or variables. The format used
to reference a variable or a state of a block is BlockName.AttributeName or Block-
Name.StateName. Conditions on variables can be combined using classic boolean (||, &&,
and, or) and integer (==, >, >=, <, <=, +, -, *, /) operators. Variables can be negated or
inverted (not(var), !(var), -var). States are considered as a boolean variable.

Before the pragma, the letter T or F may be inserted to specify if the expected result
of the pragma is true, in the former case, or false, in the latter. The pragma will be
considered satisfied if the result is equivalent to the expected one.

Here there are few examples of valid pragmas:

• E<> Passenger.isInCockpit ==true && DoorAndLockButton.inside==1: there exists
a path in which there is at least one state in which Passenger.isInCockpit is true and
DoorAndLockButton.inside is equal to 1

• F A[] MainController.currentPressure < 25: MainController.currentPressure is al-
ways less than 25. The expected result is false.

Page 10



• DoorAndLockButton.IN_EMERGENCY_CALL –> DoorAndLockBut-
ton.CLOSED_AND_LOCKED || DoorAndLockButton.CLOSED_AND_UNLOCKED:
whenever DoorAndLockButton.IN_EMERGENCY_CALL state is encounted,
then or DoorAndLockButton.CLOSED_AND_LOCKED or DoorAndLockBut-
ton.CLOSED_AND_UNLOCKED will be encounted at some subsequent moment.

• T A<> Sensor.iter == Main.dataSize - 1: all the paths reach the condition where
Sensor.iter is equal to Main.dataSize - 1.

3.2 Traces generation
For advanced verification queries and deadlock check, there is the possibility of generating
counterexample traces that show the path to prove or disprove a property. In particular:

• A[] p: shows the path that disproves the property

• A<> p: shows the path that disproves the property

• E[] p: shows the path that proves the property

• E<> p: shows the path that proves the property

• p –> q: shows the path that disproves the property starting from a state with p valid

• No deadlocks?: shows a path to a deadlock

• No internal action loops?: shows an infinite loop that has no interraction with the
environment

The Generate property AUT graphs trace option allows us to display the propery traces
as a reachability graph, saving it in AUT format. An entry to the graph, with the name of
the query, will appear in the R. Graphs section in TTool.

The Generate property text trace option writes, in the file indicated in the text
field on the right, all the steps to reach a property proof. State lines show the current state
in the state machine for each block in the system. Transition lines show details of the
transition taken to reach the next state.

Let’s do a guidated example to traces generation. Let’s open again the "Pressure-
Controller.xml" model used in the previous section. Let’s execute a verification of the
only query MainController.LowPressure –> AlarmManager.AlarmIsOff activating both
the options Generate property AUT graphs trace and Generate property text trace. Let’s
press start to execute the verification. If now we open the file trace*.txt in which the
trace is saved, we can see the name of the trace in the first line, and then states and
transitions alternating until the counterexample state that disprove the property. The first
state has the state machine pointed to MainController.LowPressure (or to a direct child like
MainController.WaitFirstHighPressure). The last state indicates a loop or a state for which
the property is proven to be never satisfied. The AUT graph is visible with the name of the
query in the Reachability graphs section as shown in Figure 10. Doing right click on the
graph and pressing show, we are able to see graphically the trace (see Figure 11).

Page 11



Figure 10: Link to the AUT graph generated on query

Figure 11: AUT graph generated on query

3.3 Concurrency behavior
In section 3, we discussed about the option Ignore concurrency between internal actions
and how it could effect the model-checker behavior. In this section, we will show with a
guided example the differences between having this option on or off.

In this simplified example (see Figure 12), we have two blocks: a sensor and a main
block that receive the informations. Let’s consider the two blocks connected through a
synchronous channel. Also with asynchronous there would not be any difference in this

Page 12



Figure 12: Example on concurrency

analysis. The two states machine are shown in figure 13.

(a) (b)

Figure 13: Sensor (a) and Main (b) state machines

First, we want to prove that after Sensor.Sent, Main will eventually reach the Re-
ceive state (Sensor.Sent –> Main.Receive). After the data is sent by the sensor and received
by the main block, the is a concurrency between executing first the Sent state or the
Received state. In this case, both with the option Ignore concurrency between internal
actions selected or not, the pragma result will be always false. In fact, the Received state
may be reached before Sent.
Different is the case for the following pragma: Sensor.Sent –> Main.Restart. In this case,
after the Received state, there are two possible choices: Elaborate and Ignore. If the

Page 13



option Ignore concurrency between internal actions is selected, the single transitions have
priority over the choices. This will lead to Sent being reached before Elaborate or Ignore.
The pragma will be true. If the option is not selected instead, a full concurrency study is
executed and the pragma will result correctly false. Note that a full concurrency study will
considerably slow down the verification performance.

The best way to avoid concurrency problems and to keep this option always selected
is to ask concurrency aware queries. If we want to check if something happens after sending
the data, the best choice would be to query Sensor.Wait –> Main.Restart. This query does
not depend by concurrency since it happens before a "synchronization" point.

Page 14



4 AVATAR Model-Checker

4.1 Introduction
The model-checker is used to generate a reachability graph starting from an AVATAR model.
It can be also used to check the reachability and liveness on a list of selected states. The
model checker is contained inside the package avatartranslator.modelchecker.

4.2 Reachability Graph
The model-checker constructor takes an Avatar specification as input. The main method
used for the graph generation is startModelChecking(). This method is responsible for
preparing the data structure for the main algorithm to be executed. In particular, it runs the
following operations:

• Remove else guards, timers, composite states, randoms from the state machine of
blocks in the Avatar specification

• Prepare the states

• Prepare the transitions

• Run startModelChecking(nbThreads)

The states are prepared inside the method prepareStates(). For each block in-
side the avatar specification, the method extracts all the states definitions (instances of
AvatarStateElement) from the list of state machine elements elements saving them in
the array allStates.

Transition between states of the state machines, instead, are prepared inside the method
prepareTransitions(). This method is responsible for storing the type of transaction
based on the type of the following state they address. The method is executed over all the
blocks of the specification. The transitions are differentiated into the following categories:

• TYPE_RECV_SYNC

• TYPE_SEND_SYNC

• TYPE_ACTION_AND_METHOD

• TYPE_ACTIONONLY

• TYPE_METHODONLY

• TYPE_EMPTY

Then the number of available processors is stored and passed to the next method
startModelChecking(nbThreads).

Page 15



4.3 Main algorithm preparation
The reachability graph generation starts in the method
startModelChecking(nbThreads). In the first part, the graph data structures are
initialized:

• states: map used to store the states of the reachability graph
(SpecificationState), mapped by the hash of the state

• statesByID: map used to store the states of the reachability graph
(SpecificationState), mapped by the ID (incremented every time a state is
created)

• pendingStates: list of graph states that can be executed during the current iteration
of the algorithm

The initial state of the reachability graph is created. A (SpecificationState saves all the
current configuration of the blocks and state machines. This is reached wrapping the Avatar
blocks into specification blocks. SpecificationBlock adds an integer array saving:

• State: it points the current state of the state machine of the wrapped block in
allStates

• Clock_min: minimum value of the current clock used as a lower bound to extract the
executable transitions (time domain)

• Clock_max: maximum value of the current clock used as a higher bound to extract
the executable transitions (time domain)

• Attributes: values of block variables

The initial state is initialized storing the specification blocks for each Avatar Block.
Specification blocks are initialized with the start state, clock at 0 and with initial variables
value.

The method handleNonEmptyUniqueTransition() is used to increase the current
state of specification block until not empty unique transitions are found. For instance, if
from the initial state of the state machine there is only one empty (true guard, no time, no
signal, no action) transition to another state, it can be directly executed since it doesn’t have
any dependency. Executing first these transitions helps to decrease the number of states
created in the reachability graph.

Then a hash for the state is created. All the specification block states values (state,
clock, values) are stored together in an array called hash. For this array, a hash number
is calculated. The initial state is then inserted inside the maps states, statesByID and
inside the pendingStates list.

Then the method computeAllStates() is called to run the main algorithm on multiple
threads.

Page 16



4.4 The Main Algorithm
The main loop of the algorithm is run in parallel by multiple threads in the method run().
The main loop executes the following actions:

• Pick-up a state from the pending state queue

• Prepare the transitions from the selected state

• Execute the valid available transitions

• Gather the next possible states

• Create a link in the reachability graph between current and new states

• Insert the new states in the pending list

A state is picked up with the method pickupState(). The thread waits for an available
state to be processed in the pendent queue.

The main method for the application of the algorithm is
computeAllStatesFrom(SpecificationState). First it pre-
pares the transitions from the current state with the method
prepareTransitionsOfState(specificationState). For a specification state,
it creates an array transitions containing all the possible transitions that could be
executed from the current specification state, i.e. from the states pointed by the specification
blocks for each state machine, wrapped in specification transitions.
The method handleAvatarTransition checks if a transition can be executed at the
current state. First, it checks if the guard condition is satisfied. Then it wraps the transition
under analysis inside a specification transition. A specification transition saves the following
information:

• If the start state of the transition (state machine) has multiple transitions

• The transition of the state machine which is represented

• The min and max clock values

The minimum and maximum clock of the transaction are calculated. A transition can happen
during a time contained inside an interval1. Inside these clock variables we want to store the
difference from the current time interval for a transition to occur:

• The minimum clock value would be given by the situation when the past transition
occurs as late as possible and the current under analysis happens as soon as possible
(assuming that this transition starts after the past one)

• The maximum clock value would be given by the situation when the past transition
occurs as soon as possible and the current under analysis happens as late as possible
(assuming that this transition starts after the past one)

• When the assumption (the transition starts after the past one) is not valid, the reasoning
is exactly the opposite

1A trasition may occur after max clock value has elapsed in case the following action is not possible, e.g.
waiting for a signal that is not yet available

Page 17



This interval is important as only transitions within the smallest interval can be executed
(exhaustive explanation further on in the documentation).

Then, the main method selects the executable transitions of the specification state base
on the following criteria:

• A synchronous transition (Send, Receive) is executable if both the sender and the
receiver transitions, which belong to the same signal, are available in transitions.

• Only the first available transitions can be executed. The minimum clock depends on
the transition with the minimum clock min. The maximum clock, instead, by the first
transition with the minimum max clock. For instance, let’s imagine that we are at
clock (0, 0) and we have three transitions (0, 3), (1, 2), (4, 5). In this case, the min
clock will be 0 and max clock 2. The two possible transitions that can be executed are
(0, 3) and (1, 2)

• Each transition is limited by the general max clock

The ignoreConcurrenceBetweenInternalActions flag controls the possibility of exe-
cuting as soon as possible empty transitions with no alternatives and no time constraints. For
all the transitions that follow these rules, the method computeAllInternalStatesFrom
is called.

First of all, a new state newState is created from a copy of the current one. Then it is
updated with new values depending on the transition. The first operation is to update the
clock time for each specification block. The time is kept relative to the past transition. So,
after a transition is executed, the specification block where the transition occurred will have
min and max time at zero. For instance, let’s execute a transition A. After transition A, a
transition B can happen with a delay between 20 and 30 units. No matter the value of the
clock before transition A, the clock is set at 0 to wait for an interval of time between 20
and 30. For specification blocks not in the transitions, instead, the current clock has to be
increased and then upper bounded to the max clock of the transition. For instance, let’s take
a transition A on SP1 with time (10, 20), a transition B on SP2 with time (20, 30), and a
global clock at 0. After transition A is executed. The clock in SP2 is increased becoming
(10, 20) so that the time is considered advancing during transition A.

The transition is executed in the method executeTransition. The next state pointed
by the transition is retrieved, the state index of the specification block is updated, and the
action or the synchronized signal is executed.

The hash of the newly created state is then used to check if an already existing state
with the same configuration already exists. In this case, only a link would be added and the
new state copy will be deleted.

For nonempty transitions, in general, the execution procedure is the same as the algo-
rithm’s preparation explained in subsection 4.3 which is executed for all the pendent tran-
sitions. Continuing the main loop of the algorithm, the global reachability graph can be
generated.

Page 18



5 Reachability of States
The reachability condition of states is checked while creating the reachability graph. The
array reachabilities contains the states elements to be checked. Every time a transition
is executed, from state st to state st+1, st+1 is checked for reachability. When all the states
elements in reachabilities have been reached or the reachability graph is completed, the
reachability study finishes.

5.1 Deadlocks
Deadlocks are searched while building the reachability graph. If a state with no available
transitions is encountered, the model-checker is stopped using the flag propertyDone. The
deadlock study is bypassed if another previous study finds deadlocks.

5.2 Reinitialization
The model-checker contains an option to test if the system always reaches the initial state
for each execution trace. This is verified as a liveness of the State 0 represented by
SpecificationReinit.

6 Safety and Liveness

6.1 Definitions
In the model also safety and liveness conditions could be proved. In particular, imagining a
structure in time of the model, as a tree, the following CTL and LTL formulas are supported:

• A[] p: property p is always true for each path (other common notation AG p)

• A<> p: property p will eventually be true for each path (other common notation AF
p)

• E[] p: there exists at least one path in which property p is always true (other common
notation EG p)

• E<> p: there exists a path in which property p will eventually be true (other common
notation EF p)

• p –> q: whenever p is true, then q will be true at some subsequent moment (other
common notation G(p⇒ Fq) called leadsTo)

with p and q properties. Properties are written as expressions on variables or states of
the AVATAR model.

6.2 Handling of safety and liveness properties by the AVATAR model
checker

Safety and liveness properties are represented by the SafetyProperty class. The proper-
ties are built in the AvatarExpressionSolver class. It creates a syntax tree where each leaf
is an AvatarExpressionAttribute or an immediate value and each node is an operator. An

Page 19



AvatarExpressionAttribute can represent a state or a variable of the model. It contains point-
ers so that, given a state of the model checker, it extracts the associated value in O(1). It can
represent integers and boolean values encoded as integers. So, results of properties can be
extracted just by visiting the AvatarExpressionSolver tree. AvatarExpressionSolver is also
used for guards and actions. The methods getSolverResult(SpecificationState)
and getSolverResult(SpecificationState, AvatarStateMachineElement) can
be used to obtain the expressions result.

Safety properties are solved by finding loops or terminal conditions (deadlocks) in
the model. For each property type we now explain how the modelchecker behaves:

• A[] p: if during the reachability graph creation a new state has p false, then the prop-
erty is false.

• A<> p: if the property is true for a state, stop the search on that path. If a false loop
or a false deadlock is found, the property is false. If no false loops or false deadlocks
are found, the property is true.

• E[] p: if the property is false for a state, stop the search on that path. If a true loop or
a true deadlock is found , the property is true. If no true loops or false deadlocks are
found, the property is false.

• E<> p: if during the reachability graph creation, p is true in a new state, then the
property is true.

• p –> q: every time p is true, save the SpecificationState in the safetyLeadStates ar-
ray. Then, for each node in safetyLeadStates start a liveness check A<> q from that
node. If the liveness is true for all the nodes in safetyLeadStates or safetyLeadStates
is empty, the property is true, else it is false. The model-checking is bounded in order
to reduce the exploration space in case of false pragmas. It allows also to prove false
properties on infinite graphs. The bound is defined on the number of states match-
ing property p in the current execution. When the number of states is greater than a
threshold, the model-checker is paused, the current situation is saved, and the verifi-
cation of q starts from the retrieved states. If the property cannot be proved by these
states, the model-checker on p is resumed and a new grater threshold is defined.

The main methods involved in the properties verification process are:

• executeSafetyRun: it executes a safety property and it retrieves the result on the
current model. It has options to ignoreConcurrence, emptyTransitions and to use par-
tialHashing in the leadsTo verification (more details in the internal action loops section
7).

• evaluateSafetyOfProperty: given the current and old state, this method checks
if the property is satisfied, still satisfied or not satisfied. It returns the result which is
assigned to the flag property of a SpecificationState.

• actionOnProperty: it selects an action based on the type of verification, the current
result of the property, and if the node exists already (possible loop). If the general
result can be concluded, the flag propertyDone is set to stop the execution of the
model-checker.

Page 20



• checkPropertyOnDeadlock: given the current state with no executable transitions
(deadlock), it executes an action depending on the type of CTL query.

6.3 Handling combinatory explosion
The exploration space of states explodes easily in many models. That’s why proving
properties is hard. The basic idea of liveness is to find a counterexample to prove it wrong.
So, we want to detect a cycle (or a path that ends to a deadlock) for which the state we
want to check is not live. If the states space explodes, an exploration in breadth will not
be effective as the number of nodes increases too much before proving or disproving any
property, the space will be too big to be explored.

Moreover, loops are found analyzing a path in depth. So, the check is executed in a
depth first search-like manner, instead of a breadth first search implemented for other types
of studies, like reachability. It will allow us to search through a path for a property to be
true or false having a result within a manageable state-space most of the time. As soon
as a property is (un)satisfied the search can continue through another path or stop. In the
implementation, each thread follows a path to disprove the liveness. As soon as the property
is unsatisfied, the check can stop. As soon as the property is satisfied, the search in that path
can stop, and another one is fetched.

To limit the state’s explosion, it is advisable to merge action nodes when possible.
This happens inside the method computeAllInternalStatesFrom where all the possible
executable action transitions are executed and merged into one state. During the leadsTo
verification also reduceCombinatorialExplosionProperty is also used to execute and merge
transitions keeping a property valid in order to reduce the number of states added in the
structure safetyLeadStates.

7 Internal action loops
Internal action loops are used to check conditions when the system stops interracting with
the environment. This condition may happen when there are action loops, which do not
contain any signal communication, in the state machine of the blocks. If a state machine
contains this type of loops, we want to verify that an exit condition is always reached (live).

The internal loops are detected statically through a strong connected components
search executed by the method checkStaticInternalLoops in the AvatarStateMachine
class. The method returns a list of all the action loops which are described by a list of
transitions.

The verification of internal action loops is then managed in the SpecificationAction-
Loop class. The check is verified using a leadsTo pragma built as follows:

• if no static loops are detected, a block is free from internal action loops

• if the loops contains transitions from a random block, the loop is removed as the exit
condition is guaranteed by construction

• all the states contained in the loops are collected

Page 21



• a leadsTo query p –> q is built with p equal to the logic OR of all the states collected
and with q equal to the not of p. This pragma verifies that once entered into a state
contained in a possible action loop, in a subsequent moment, a state not contained in
a action loop is always reached.

• the pragma is verified by the model-checker. If the result is false, the block contains
at least one infinite action loop trace

• these operations are repeated for each block in the system

For instance, if a static loop contains the states Collect, Elaborate, Fail, Retry the pragma
created would be Collect || Elaborate || Fail || Retry –> !(Collect || Elaborate || Fail || Retry).

8 Verification traces
Verification traces are extracted using the class CounterexampleTrace. For each state
created during the model-checking a CounterexampleTraceState is associated with it to save
the current state pointer for each block and a pointer to a father. All the "counter" states
are inserted in the map traceStates. The final verification state is extracted by the method
evaluateSafetyOfProperty or checkPropertyOnDeadlock. That state represents a point of a
loop, of a deadlock, or a reachability.

The verification trace is constructed in the CounterexampleTrace class using the method
buildTrace. The start point is the last state counterexampleState which ended the verifi-
cation. If the verification ends with a reachability or a deadlock, so it does not contain
a loop, the trace is simply created visiting each father starting from counterexampleState
until state 0. If instead, the verification ends with a loop, we have to eventually manipulate
the data since the recorded trace using the fathers may not include a loop. If visiting each
father from counterexampleState a loop is detected, the trace is already well constructed. If
instead, it does not contain a loop, a loop is searched using a deep first search starting from
the loop point (the state with the same hash value of counterexampleState). Then, the trace
visiting each father starting from the loop point is appended to the previously detected cycle.

In the class AvatarModelChecker the data structures are allocated in the method init-
Counterexample. The method resetCounterexample must be used before starting a new
verification to clear the data structures and to prepare the corresponding variables. Finally,
the method generateCounterexample is used to generate the traces after a verification run if
a counterexample has been detected.

Page 22


	Preface
	Table of Versions
	Table of References and Applicable Documents
	Acronyms and glossary
	Executive Summary

	A First Example
	Getting the example
	Understanding the model
	PressureSensor
	MainController
	AlarmManager
	AlarmActuator

	Reachability and liveness
	Safety properties

	Verification Guide
	CTL query syntax
	Traces generation
	Concurrency behavior

	AVATAR Model-Checker
	Introduction
	Reachability Graph
	Main algorithm preparation
	The Main Algorithm

	Reachability of States
	Deadlocks
	Reinitialization

	Safety and Liveness
	Definitions
	Handling of safety and liveness properties by the AVATAR model checker
	Handling combinatory explosion

	Internal action loops
	Verification traces

