
TTool
ttool.telecom-paris.fr

Code generation from Avatar Design Diagrams in TTool

Document Manager Contributors Checked by
Name Ludovic APVRILLE

Ludovic APVRILLE Ludovic APVRILLE
Contact ludovic.apvrille@telecom-

paris.fr
Date February 3, 2020

Page 1

ttool.telecom-paris.fr

Contents
1 Preface 3

1.1 Table of Versions . 3
1.2 Table of References and Applicable Documents 3
1.3 Acronyms and glossary . 3
1.4 Summary . 3

2 Configuration 4
2.1 TTool configuration . 4
2.2 External tools . 4

3 A first example 5
3.1 Getting the example . 5
3.2 Understanding the model . 5
3.3 Generating executable code . 5
3.4 Compiling the generated code . 7
3.5 Executing the generated code . 8
3.6 Backtracing . 9

4 Enhancing model with user code 11
4.1 Principle . 11
4.2 Global code . 12
4.3 Block code . 12
4.4 Code generation and execution with custom code 12

5 Advanced model enhancement with user code 14
5.1 GUI . 14
5.2 Microwave Software (MS) . 14

5.2.1 Global code . 14
5.2.2 Local code . 16

5.3 GUI animation . 17
5.4 GUI actions . 18

5.4.1 GUI side . 18
5.4.2 MS side . 19

6 Another exampe of advanced model enhancement with user code 21
6.1 GUI . 21
6.2 Pressure Controller (PC) . 21

6.2.1 PressureSensor . 22
6.2.2 AlarmActuator . 23

7 Customizing the code generator 24

Page 2

1 Preface

1.1 Table of Versions

Version Date Description & Rationale of Modifications Sections
Modified

1.0 13/06/2017 First draft

1.2 Table of References and Applicable Documents

Reference Title & Edition Author or
Editor

Year

1.3 Acronyms and glossary

Term Description

1.4 Summary
This document describes the code generation principle for AVATAR design diagrams imple-
mented in TTool. It describes how to configure TTool for generating code, how to generate
the code, how to compile it, how to execute it. Finally, the document explains how to have
the generated code to connect with an external graphical interface.

Page 3

2 Configuration

2.1 TTool configuration
At first, if not already configured1, you must open the configuration file of TTool. The
default file is located in:

TTool/bin/config.xml

Open your configuration file, and set the following lines accordingly with your TTool instal-
lation:

• Main directory in which the generated code and the avatar runtime library are located:

<AVATARExecutableCodeDirectory data="../executablecode/" />

• This configuration works only for models. For TTool projects, the default directory
is "AVATAR_executablecode" which is automatically created in the sub folder of the
project.

• Host that is intended to perform the code compilation and execution. Default value is
"localhost".

<AVATARExecutableCodeHost data="localhost"/>

• Compilation command to compile the generated code:

<AVATARExecutableCodeCompileCommand data="make" />

• Execution command. This will start the application generated from your model:

<AVATARExecutableCodeExecuteCommand data="run.x" />

2.2 External tools
The previous configuration assumes that a C compiler, referenced by the provided Makefile
(default = "gcc"2) is installed on your machine, as well as the POSIX-1 librairies. Also, a
Mafile utility must be installed (e.g., "GNU make"3).

1TTool comes already configured
2https://gcc.gnu.org/
3https://www.gnu.org/software/make/

Page 4

https://gcc.gnu.org/
https://www.gnu.org/software/make/

3 A first example
This very first example explains how to generate the code from an AVATAR design model,
and how to introduce your own basic C functions in the code generation process.

3.1 Getting the example
Be sure to get the latest version of TTool including the remote loading of models (June
2017 and after). Do: File, Open from TTool repository, and select "HelloWorldCodeGener-
ation.xml".

3.2 Understanding the model
This models contains a design diagram composed of one MainBlock. This later regularly
executes the "printHelloWorld" method (see Figure 1).

<<block>>

MainBlock

- period = 2 : int;

- printHelloWorld()

(global code) MainState

after (period,period)
printHelloWorld()

Figure 1: Hello world model

You may then check the syntax of the diagram, and select the "interactive simulation
icon". From the window that opens, make a step-by-step simulation, and observe the be-
haviour of the system. This behaviour is simulated, that is, there is no executable code that
is generated to simulate the model.

3.3 Generating executable code
To generate executable code, click on the "check syntax" icon, and then click on the "code
generation" icon representing a gear. The following window should open (see Figure 3).

• You can add debugging information to the generating code ("Put debug information
. . . ") if you wish the generated code to print information in the default output when
executing. Typical debugging information is: state entering/exiting and send / receive
of signals.

• Tracing capabilities enable to draw a sequence diagram representing the execution of
the code.

• User defined code can be included (or not). Uncheck this option first.

• The time unit manipulated by TTool can be set to seconds, milliseconds or microsec-
onds. For example, if "sec" is selected, it means that "after(2)" will be transformed as
a waiting of two seconds. Default is "sec", keep it like this for the incoming tutorial.

Page 5

Figure 2: Functional simulation of the Hello world model

Page 6

Figure 3: Generating C/POSIX code for the Hello world model

3.4 Compiling the generated code
Once the code has been generated, the dialog window should automatically switch to the
"Compile" tab (see Figure 4). There, you should notice two alternative possibilities:

• Compile the code for your localhost (You should select this option).

• Compile the code for the SoCLib platform. This option is not addressed in this docu-
ment.

If the compilation fails, you can try to remove all old .o files using the first tab of the dialog
window: "Generate Code", "Remove .o files". If the compilation still fails, it could be due
to a bad installation of a C compiler. We strongly recommend to use the GNU C Compiler
(gcc). You could also edit the Makefile you have selected (see section 2) to adapt it to your
localhost particularities. Note that the compilation process also compiles the Avatar runtime
C sources4, and links all resulting object files together.

You may obvisouly try to compile the code from a terminal. e.g.:
$ cd TTool/executablecode
$ make
echo Making directories
Making directories
mkdir -p ./lib
mkdir -p ./lib/generated_src/
mkdir -p ./lib/src/
/usr/bin/gcc -O1 -pthread -Wall -I. -I. -Isrc/ -Igenerated_src/ -o lib/generated_src/main

↪→ .o -c generated_src/main.c
/usr/bin/gcc -O1 -pthread -Wall -I. -I. -Isrc/ -Igenerated_src/ -o lib/generated_src/

↪→ MainBlock.o -c generated_src/MainBlock.c

4These sources are located in: TTool/executablecode/src or in your project directory:
AVATAR_executablecode

Page 7

Figure 4: Compiling the Hello world model generated C code

/usr/bin/gcc -O1 -pthread -Wall -I. -I. -Isrc/ -Igenerated_src/ -o lib/src/request.o -c
↪→ src/request.c

/usr/bin/gcc -O1 -pthread -Wall -I. -I. -Isrc/ -Igenerated_src/ -o lib/src/message.o -c
↪→ src/message.c

/usr/bin/gcc -O1 -pthread -Wall -I. -I. -Isrc/ -Igenerated_src/ -o lib/src/myerrors.o -c
↪→ src/myerrors.c

/usr/bin/gcc -O1 -pthread -Wall -I. -I. -Isrc/ -Igenerated_src/ -o lib/src/debug.o -c src
↪→ /debug.c

/usr/bin/gcc -O1 -pthread -Wall -I. -I. -Isrc/ -Igenerated_src/ -o lib/src/syncchannel.o
↪→ -c src/syncchannel.c

/usr/bin/gcc -O1 -pthread -Wall -I. -I. -Isrc/ -Igenerated_src/ -o lib/src/asyncchannel.o
↪→ -c src/asyncchannel.c

/usr/bin/gcc -O1 -pthread -Wall -I. -I. -Isrc/ -Igenerated_src/ -o lib/src/
↪→ request_manager.o -c src/request_manager.c

/usr/bin/gcc -O1 -pthread -Wall -I. -I. -Isrc/ -Igenerated_src/ -o lib/src/random.o -c
↪→ src/random.c

/usr/bin/gcc -O1 -pthread -Wall -I. -I. -Isrc/ -Igenerated_src/ -o lib/src/mytimelib.o -c
↪→ src/mytimelib.c

/usr/bin/gcc -O1 -pthread -Wall -I. -I. -Isrc/ -Igenerated_src/ -o lib/src/tracemanager.o
↪→ -c src/tracemanager.c

/usr/bin/gcc -O1 -pthread -ldl -lrt -Wall -I. -I. -Isrc/ -Igenerated_src/ -L. -L.. -o
↪→ run.x lib/generated_src/main.o lib/generated_src/MainBlock.o lib/src/request.o lib/
↪→ src/message.o lib/src/myerrors.o lib/src/debug.o lib/src/syncchannel.o lib/src/
↪→ asyncchannel.o lib/src/request_manager.o lib/src/random.o lib/src/mytimelib.o lib/
↪→ src/tracemanager.o -lm 2>&1 | c++filt

3.5 Executing the generated code
Once the generated code has been successfully compiled and linked, the execution tab is
selected (see Figure 5). There are three possible options to execute the compiled program:

• Running the program ("Run code")

• Running the program and activating the backtracing

• Running the program in the SoCLib environment (no covered in this document).

Page 8

Figure 5: Executing the Hello world program

Select the second option. An execution trace should be displayed in the console of the dialog
window.

3.6 Backtracing
After you have started the program, switch to the "Results" tab. You should see a window
similar to the one display in Figure 6. There are two options:

• Displaying the execution trace of the localhost program

• Displaying the execution trace of the SoCLib program (option is not covered in this
manual)

Select the first option, and click on the "show simulation trace" button. A new window
should open, displaying the execution of the model under the form of a UML Sequence
Diagram (see Figure 7)

Page 9

Figure 6: Backtracing dialog window

Figure 7: Executing the Hello world program

Page 10

4 Enhancing model with user code

4.1 Principle
A user of TTool can provide its own C code within an AVATAR design diagram. When a
model is enhanced with custom C code, the custom C code may prevent the compilation
process to succeed: if the compilation fails, you need to reconsider the code you have in-
serted according to the errors provided by the compiler.
Basically, there are two types of custom code as show in the "prototyping" window (see
Figure 8). To open this window, simply double-click in the attributes/methods/signal/code
part of a given block.

• The global code of the model

• The local code of a given block. This code is itself split into two sub parts:

– The global code of the block.

– The code implementing methods of the block.

Figure 8: Global code of an application and global code of a block

Page 11

4.2 Global code
The global code typically contains the declaration of global variables. Also, one specific
method can be used to execute code when the application starts. The function prototype is:

void __user_init()

For instance, the global code of the HelloWorld example is as follows:
void __user_init() {
printf("Initialializing\n");

}

4.3 Block code
The block code typically contains variables that are not declared as block attributes. Block
attributes can indeed be directly used in the custom code. The block code can also pro-
vide an implementation for the block methods. For a method called "method" of the block
"block", the function must be declared as "__userImplemented__block__method" and you
must ensure to check the "Implementation provided by the user" option in the method
definition window (see Figure 9). For instance, the following code correesponds to the block
code of "MainBlock". It implements the method printHelloWorld() referenced in the model
(see Figure 1).
void __userImplemented__MainBlock__printHelloWorld() {
printf("Hello world from generated code\n");

}

4.4 Code generation and execution with custom code
Be sure to check the "Include user code" option on the code generation tab of the code
generation window. You may also uncheck the "Put tracing capabilities in generated code"
since we won’t use this in this example. Then, follow the usual stages: compile, and then
execute the program. You should now see the effect of the printf command in the console.
It should like this:
Initializing...
Hello world from generated code
Hello world from generated code
Hello world from generated code

Page 12

Figure 9: Selecting a method for which the user provides an implementation

Page 13

5 Advanced model enhancement with user code
To follow this section, you have to use another TTool model called "Mi-
croWaveOven_SafetySecurity_fullMethodo.xml", available on the network repository of
TTool (File, Open from TTool repository).
This section explains how a code generated from TTool can be linked with an external soft-
ware, e.g. to animate a graphical user interface. The provided example relies on datagrams
and sockets to echange information between the Microwave Software (fully generated from
TTool) and its graphical user interface (programmed "by hand"). We will now call these two
software MS and GUI, respectively

5.1 GUI
The TTool distribution includes an external software which represents a graphical user in-
terface of a microwave system. The source code (in Java) of this software is located in
"TTool/executablecode/example":
$cd TTool/executablecode/example
$ls
DatagramServer.java MainMicrowave.java MicrowavePanel.java
Feeder.java MainPressureController.java README

This directory contains the java sources as well as a README file. First compile the java
source code, and then execute the GUI, as follows:
$javac *.java
$java MainMicrowave

A window similar to the one of Figure 10 should open. This window is not yet animated.
To do so, we need to build the MS.

5.2 Microwave Software (MS)
Open the model in TTool, then double-click on a block method, and finally select the "Pro-
totyping" tab. You can now review the global and local code.

5.2.1 Global code

The goal of the global code is to setup the communication infrastructure to the GUI. To do
so, the global code is as follows.

• It declares headers.
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#include <strings.h>
#include <errno.h>

• It defines the global constants and variables, including the hostname to use, and the
port.
const char* hostname="localhost";
const char* portname="8374";
int fd;
struct addrinfo* res;
#define MAX_DGRAM_SIZE 549

Page 14

Figure 10: Window of the Graphical User Interface

• It defines the global constants and variables used to be able to interact from the GUI
to MS, and the functions to send datagrams to the MS. For example, when you click
on the "start" button, a datagram is sent from GUI to MS. This part is explained in
more details in section 5.4
pthread_t thread__Datagram;

// Handling start datagrams
int start = 0;
pthread_mutex_t startMutex ;
pthread_cond_t noStart;

void startDatagram() {
pthread_mutex_lock(&startMutex);
start = 1;
pthread_cond_signal(&noStart);
pthread_mutex_unlock(&startMutex);

}

// Assumes fd is valid
void* receiveDatagram(void *arg) {
printf("Thread receive datagram started\n");

char buffer[MAX_DGRAM_SIZE];
struct sockaddr_storage src_addr;
socklen_t src_addr_len=sizeof(src_addr);

while(1) {
printf("Waiting for datagram packet\n");
ssize_t count=recvfrom(fd,buffer,sizeof(buffer),0,(struct sockaddr*)&src_addr ,&

↪→ src_addr_len);
if (count==-1) {
perror("recv failed");

} else if (count==sizeof(buffer)) {

Page 15

perror("datagram too large for buffer: truncated");
} else {
//printf("Datagram size: %d.\n", (int)(count));
if (strncmp(buffer, "START", 5) == 0) {
//printf("+++++++++++++++++++++++ START\n");
startDatagram();

}
}

}
}

• It defines a function to send a datagram.
void sendDatagram(char * data, int size) {
if (sendto(fd,data,size, 0, res->ai_addr,res->ai_addrlen)==-1) {

printf("Error when sending datagram");
exit(-1);

}
}

• It defines the user initialization function. This function puts in an "addinfo struct"
information for sending the datagram. Then, it gets the target IP address. Following
this, it creates a reference to the right socket. Finally, it tries to send a test packet
("salut"). Whenever a failure is encountered, the application exits. When the C code
is generated from the model, all the global code is integrated into a file called "main.c".
void __user_init() {
const char* content = "salut";
struct addrinfo hints;

memset(&hints,0,sizeof(hints));
hints.ai_family=AF_UNSPEC;
hints.ai_socktype=SOCK_DGRAM;
hints.ai_protocol=0;
hints.ai_flags=AI_ADDRCONFIG;

int err=getaddrinfo(hostname,portname ,&hints,&res);
if (err!=0) {
printf("failed to resolve remote socket address (err=%d)",err);
exit(-1);

}
fd=socket(res->ai_family ,res->ai_socktype ,res->ai_protocol);
if (fd==-1) {
printf("%s",strerror(errno));
exit(-1);

}
if (sendto(fd,content,sizeof(content),0,

res->ai_addr,res->ai_addrlen)==-1) {
printf("%s",strerror(errno));
exit(-1);

}

// Start a thread to receive datagrams
pthread_create(&thread__Datagram , NULL, receiveDatagram , NULL);

}

Note: the network code of the GUI application is located in DatagramServer.java.

5.2.2 Local code

The local code associates the call to a method of a block to the sending (or receiving) of a
datagram packet. Let’s take the example of the "Door" block. The GUI should be informed
about door opening or closing operations. In the model, each time the door is closed, the

Page 16

IDLE
(entry code)

open()

closed()

Opened
(entry code)

unlockDoor()

after (2,3)

openM()

closeM()

after (2,3)

Figure 11: State Machine Diagram of the Door block

openM() method is closed. Also, each time the door is closed, the closeM() method is called
(see Figure 11).

In the local code, we first need to state that a sendDatagram() function is externally
defined.
extern void sendDatagram(char *data, int size);

Then, we need to define the user defined C code for both openM() and closeM(). We also
define constant strings in order to uniquely identifiydatagram packets sent to the GUI. In the
code, "10" corresponds to the length of the datagram.

const char* openD = "Open Door";
const char* closeD = "Close Door";

void __userImplemented__Door__openM() {
sendDatagram(openD, 10);

}

void __userImplemented__Door__closeM() {
sendDatagram(closeD, 10);

}

The corresponding packets are also defined in the GUI application e.g. see MainMi-
crowave.java.

5.3 GUI animation
Generate the C code from TTool (be sure to check the "Include user code" option). Start the
GUI from a terminal, and then, start the MS application from TTool (you can also start MS
from a terminal). You should see the animations of the GUI while the generated application

Page 17

executes. For example, Figure 12 shows the microwave when the door opened, and Figure
13 shows the microwave in heating mode.

Figure 12: GUI when the door is opened

Figure 13: GUI when the microwave is cooking

5.4 GUI actions
5.4.1 GUI side

The GUI contains a "start" button. When the user clicks on this button, the GUI sends a
"START" datagram packet to the MS. The GUI is indeed programmed as follows:

• In MainMicrowave.java:
public void mouseClicked(MouseEvent e){

int x = e.getX();
int y = e.getY();

System.out.println("Mouse clicked!!!");

// START?
if ((x>630)&&(x<720)&&(y>335)&&(y<365)) {

System.out.println("Mouse clicked on start");
if (ds != null) {

ds.sendDatagramTo("START");
}
System.out.println("Action on start sent");

}
}

Page 18

ds.sendDatagram(..) calls a DatagramServer object that sends a datagram to the des-
tination from which it got its first packet.

5.4.2 MS side

On MS side, the global code starts in user_init() a thread that handles datagram receiving :
pthread_create(&thread__Datagram , NULL, receiveDatagram , NULL);

receiveDatagram() waits for datagram packets. When it gets a packet, it checks if it contains
the "START" string. If so, it calls startDatagram(). This function works as follows:

1. A lock is put on a mutex ("startMutex")

2. The "start" variable is set to 1

3. A call is made on the condition variable "noStart"

4. The mutex is unlock

The ControlPanel block defines a start() method called before it sends the "startButton"
signal, see Figure 14.

startButton(duration)

Active

start()

Figure 14: Window of the Graphical User Interface

Thus, when calling start(), the MS wants to wait for the "START" datagram. To do
so, the ControlPanel block implements "start()" as follows. First, it refers to externally de-
fined elements: the start variable ("start"), the mutex (startMutex) and the condition variable
("startMutex").
extern int start;
extern pthread_mutex_t startMutex ;
extern pthread_cond_t noStart;

The method itself works as follows:

1. It puts a lock on the mutex.

2. It waits untils "start" is equal to at least 1. Meanwhile, it waits on the "noStart"
condition variable.

3. When "start" is finally equal to 1 or more, it sets "start" to 0.

4. It unlocks the mutex

Page 19

Then, the execution of the ControlPanel block can continue with the sending of the
"startButton" signal. Note that this is thanks to the mutex facility that the datagram
receinving facility and the ControlPanel block cannot modify "start" at the same time.

void __userImplemented__ControlPanel__start() {
pthread_mutex_lock(&startMutex);
printf("Waiting for next start");
while(start < 1) {
pthread_cond_wait(&noStart, &startMutex);

}
start = 0;
pthread_mutex_unlock(&startMutex);
printf("****** MW can start cooking\n");

}

Page 20

6 Another exampe of advanced model enhancement with
user code

We now consider a PressureController (PC) system. This xml TTool model is available via
the TTool model repository.

6.1 GUI
The TTool distribution includes an external software which represents a graphical user in-
terface of the pressure controller environment: pressure sensor and alarm. The source code
(in Java) of this software is located in "TTool/executablecode/example": MainPressureCon-
troller.java. First compile the java source code, and then execute the GUI, as follows:
$javac MainPressureController.java
$java MainPressureController

A window similar to the one of Figure 15 should open. This window is not yet animated.
To do so, we need to build the PC. The GUI and Pc exchange UDP packets to inform each
other about modifications:

• Each time the slider is moved, a datagram packet with the pressure value is sent by
GUI to PC.

• Each time the alarm actuator is triggered, a datagram packet is sent by PC to GUI.
This packet contains "+" when the alarm must be activated, and "-" when it must be
deactivated.

Figure 15: Graphical User Interface of the Pressure Controller System

6.2 Pressure Controller (PC)
The Pressure Controller is build upon a set of blocks representing the system itself, and two
blocks representing the environment (the pressure sensor, and the alarm actuator), see Figure
16

Since we would like the pressure controller to interact with its environment, we have
customized the methods of PressureSensor and AlarmActuator.

Page 21

Figure 16: Pressure Controller System: Avatar Design

6.2.1 PressureSensor

The pressure sensor (see Figure 17) monitors the pressure with a period of 1 unit of time.
The model does not act the same when simulating the model or executing its code. To do
this, we have a "IsInCode" method that is not executed when the model is considered for
functional simulation or formal verification. Indeed, the "branch" boolean is set to false by
default, so the random command is executed (and not the readingPressure() method). On
the contrary, when executing the C code of this model, IsIncode() returns true, so branch is
equal to true, so the left branch is executed, and the pressure is read (readingPressure()).

Figure 17: State Machine Diagram of Pressure Sensor

Page 22

6.2.2 AlarmActuator

The alarm actuator (see Figure 18) waits for an oder to activate or deactivate the alarm. In
both case, it calls a user implement method setAlarm() with a different parameter ("true",
"false").

Figure 18: State Machine Diagram of Pressure Sensor

Page 23

7 Customizing the code generator
We are currently working on a plug-in facility in order to be able to customize the AVATAR-
to-C code generator. Send us an email to be informed about updates, or stay connected to
https://twitter.com/TTool_UML_SysML

Page 24

https://twitter.com/TTool_UML_SysML

	Preface
	Table of Versions
	Table of References and Applicable Documents
	Acronyms and glossary
	Summary

	Configuration
	TTool configuration
	External tools

	A first example
	Getting the example
	Understanding the model
	Generating executable code
	Compiling the generated code
	Executing the generated code
	Backtracing

	Enhancing model with user code
	Principle
	Global code
	Block code
	Code generation and execution with custom code

	Advanced model enhancement with user code
	GUI
	Microwave Software (MS)
	Global code
	Local code

	GUI animation
	GUI actions
	GUI side
	MS side

	Another exampe of advanced model enhancement with user code
	GUI
	Pressure Controller (PC)
	PressureSensor
	AlarmActuator

	Customizing the code generator

