TELECOM

Paris

—RA i

Q}) IP PARIS
TTool
ttool.telecom-paris. fr

Use of TTool explained through the creation of a coffee machine.

Document Manager Contributors Checked by
Name | Ludovic APVRILLE Christophe .
e L APVRILLE
Contact| ludovic.apvrille @telecom- Manseau, Philippe udovic APV
paris.fr Paquette, Ludovic
Date July 7, 2021 APVRILLE

Page 1

ttool.telecom-paris.fr

Contents

I__Prefacel 3
(L1 _Tableof Versionsl 3
(1.2 Table of References and Applicable Documents| 3
(1.3 Acronyms and glossary| 3

2 Intr 10N 4

3 Getting Started| 4
[3.1 Startnew project] 4

A Analysis 2
4.1 Assumptions| 5
4.2 Requirements| L 9
B3 UseCasel 13

> Designl 16

6 Verification| 22
[6.1 Reachability Graphs|. o000 29
[6.2 Safety pragmas| 29
[6.3 Latency Analysis| 30

[/__Conclusionl 32

Page 2

1 Preface

1.1 Table of Versions

Version| Date Description & Rationale of Modifications | Sections
Modified

1.0 July 7, 2018 | First draft

1.1 Oct 29, | Adding safety pragmas
2019

1.2 Jul 2,2021 | Updating document with Sophie Coudert’s
remarks

1.2 Table of References and Applicable Documents

Reference Title & Edition Author or | Year
Editor

1.3 Acronyms and glossary

Term Description

Page 3

2 Introduction

TTool is a free and open-source toolkit dedicated to the design of embedded systems based
on UML and SysML diagrams. The source files of TTool are available from its public git:
https://gitlab.telecom-paris. fr/mbe-tools/TTool.

Installing TTool can be done either from the git, or by first downloading an installer from
the website of TTool https://ttool.telecom-paris.fr/installation.html. This
webpage also explains how to start TTool in Windows, MacOS, Linux.

3 Getting Started

This section assumes that you were able to start TTool.

3.1 Start new project

To create a new project, click on the “new” button as shown in Figure [I] below or select
file and then new on the main tab. As shown in Figure 2] the main TTool window contains
three different areas, the Project navigation window, the Design window and the Map view
window; allowing the user to navigate through the files of the project and rapidly search
for elements of a design, observe and create the SysML diagrams of the design, and have a
bird’s eye view of the current diagram respectively.

- TToo
V&V Code Generation View Tool Help Main menu tab
B s Button tab & &

New File Button

Dpen an existing TURTLE modeling

Figure 1: Create a file

To begin, we will start with the creation of a Methodology diagram as the one shown on
Figure 3] In order to do this, right click on the design window and select “New AVATAR
Methodology” (Figure 2)). For each box on this diagram another diagram from the develop-
ment of the project will be selected, however, this example will not include any properties or
prototyping and therefore, these two boxes will remain blank. After all the other diagrams
are created by following the steps in the remainder of this manual, one will go back to the

Page 4

https://gitlab.telecom-paris.fr/mbe-tools/TTool
https://ttool.telecom-paris.fr/installation.html

— — - ———— —
) ool: unsaved project
ation View Tool Help
! | - & & A
Project
s .
Navigation
New Network Calculus Design B .
New DIPLODOCUS Methodalogy nght CIICk
New AVATAR Methodology
Mew SysML-Sec Methodology and then
Mew Partitioning - Functional view click here
New Partitioning - Communication Patterm
New Partitionimg - Architecture and Mapping
New Modeling Assumptions Diagram
Mew Requirement Diagrams
Mew Attack Tree
New Analysis
New Design
Map-View
Zoom value

Figure 2: Create an AVATAR Methodology

methodology diagram, double click on each box, select the diagram corresponding to it and
click on the arrow as shown in Figure {]in order to select it.

4 Analysis

4.1 Assumptions

As shown in Figure[5] right click on the panel tab and add a “New Modeling Assumptions”
diagram. By right clicking on the panel, it can be moved left or right. You can also drag-and-
drop a panel to another position. You will now have an Assumptions panel and underneath
it an Assumptions diagram tab. You can right click on this tab in order to rename it, in
this example, we changed its name to ‘System’. You will then add an assumption box by
clicking on the AST button as shown in Figure [5| You can add as many assumptions as
needed in order to fully explain what is being taken into account for the system.

1. Edit AVATAR Modeling Assumptions Diagram

2. Adds a comment: add a comment to the diagram

3. Comment connector

4. AST: adds an assumption box to the diagram

5. Diagram reference: add a box who refers to another diagram

6. Element reference: add a box who refers to an Avatar element

7. Composite: Splits up a compound assumptions into elementary ones

8. Versioning: classifies changes that are made to the original model

Page 5

\ﬁj@‘ i I’Hﬂ qui ré“ lysi rﬁﬂbesign
|7\ Methodolgy |

Assumptions [" =

Assumptions

Requirements ~
Requirements
Analysis & H
Analysis
Properties ~ Design ~
Design simu upp proverif inv
Prototyping ‘

Figure 3: Methodology Diagram

File [din VAV Code Coneration View Tool Help

Biab &a Xn T P % wox 8 o L A8 & T a & L.
“.“r\m""au'm..'-;-.'m' ague TN Methodology | B2 Assumptions | B Requirements | b Anaysis 5 Design |
T g e e e | sy |
- Reguarements ML Regu [+ B
o b AVATAR Aralyss Analyin
= B9 Dol (Devignd =
o ol Syrtan arabyuis [N] Saiection of Sagrams.
: B :,i::": Non selected diagramy Selected diagrams = B
- 8 Soarch rescn Poauiroments » _ Select the diagram
T Tl and click here, L
= | then press ok.

e P

i i " o]

Figure 4: Selecting Diagrams

Page 6

W TTool: C:\Users)\Utiisateur’ Desktop’ Polytechnique SysML\CHRISTOPHE_PHILIPPE versionSaml - o x
File Edit VAV CodeGemeration View Tool Help

Bals | 2 |2 alunla (B - 9‘
ol = & < anaiysis | f50esion || Panel tab

e Endrooment | §y system || Diagram tab

5zl - 8 m | E| & E

123 4 56 78 9 1D

]

& i FlyETEE

PEERERT AR

1

Figure 5: Assumptions Window

9. Impact: indicates that the assumption at the origin of the link as a direct impact on the
referenced element at the end on the link.

10. Composition connector: relations between a diagram reference and elements refer-
ences

To edit each of these boxes, one should double click on them. A window like the one
shown in Figure [6| will appear. In this window one can modify the name and type of the
assumption, as well as other attributes such as durability, source, status and scope. Also, a
little description of the assumption can be added in the box on the lower left corner. Fur-
thermore, different types of links, or connections, can be added between the different boxes
by clicking on the respective button shown in Figure [5|and then on the perimeter of each of
the boxes you wish to link.

Finally, in this example we have created two assumption diagrams; one for the system
itself and one for the environment. The first one contains all the assumptions directly related
to the system, while the second includes assumptions that may not be directly related to the
system, but that may affect its performance as shown in Figure [§] One can add as many
diagrams as one pleases by simply right clicking next to the existing diagram and selecting
“New AVATAR Modeling Assumptions Diagram” and following the previously mentioned
steps.

It is important to keep in mind that these assumptions will allow the creator and others
needing to interact with the system to keep track of what was and was not considered during
design. Therefore, one should attempt to be as descriptive as possible. This will make
future improvements and changes easier while providing essential information about the
system itself, resulting in a more complete design.

As shown in Figure [/} the system assumptions made for the coffee machine are those
who enable the system to perform without malfunction. For example, we have assumed the
lack of failures due to power outages and connectivity failures.

The environment assumptions were divided in two main categories: the sensors and the
actuators. In this example, due to the short number of environment assumptions, they were

Page 7

File Ednnt VAV Code Ceneration View Tool Help
Do O3 & T 2 % | 100% & 4 &
e | % Methodolog @ @ Settry atiributes of Assumpiton Machineteverfais

’ e Syvtemasm Main axtributes Other sttributes
B -
Durabslity’ Permanent -
Type << System Assumplions = -
Source: Model creator -
= e
fea L
s -
Name: L
Status Applied -
Werite short
description tee Siedaiog metthy -
i ;
1
[®] save and Close @ concei
—_— »

Figure 6: Assumptions Editing

all created on the same diagram as shown in Figure[8] Another option would be to user three
diagrams for the environment assumptions. The first one would indicate the link between
the environment and the two other diagrams, which would be the sensors diagram and the
actuators diagram.

<4 5ystem Assumptions> q!
SetupMotModeled ZZGystem Aesumplion=# %
Text="The setup procedure ofthe SystemNeverShutdown

controller will not be modelad.” Text="Assumption description:
Durabilite="Fermanant’ The systern will newer shutd man "

Source="Madel creatar” kel :
Status="Applied" Durahbilit="Farmanent

Scope="Modeling activity

Source="Model creator
Status="Applied"
Scope="mModeling activity"

<=2 5ystem Assumptions > q‘

Controller
[35]
< System Azzumptions> %
Maintenance
Text="Meither scheduled nor upon <= Gystem Pesumptions =
request maintenance is modeled” MoPowerCut Gy
Drability="Fermanent" = £ s
Source="Model creator” Text="Assumption description:
Status="applied" The cnntrnller}n\nll not suffer
Scope="Modeling activity" any power cut!
Ciurahility="FPermanent"
Source="Model creator”
Status="Applied"

Scope="Modeling activity"

Figure 7: System Assumptions

The coffee machine has two type of sensors, a currency detector and pushbuttons. To-
gether, they allow the users to order a cup of coffee or a cup of tea, and to pay for it. For
their part, the actuators shall allow the users to receive their order. This part was fulfilled by
the mechanical device. A mechanism permitting a transfer of information to the users was
added to improve the ease of use of the coffee machine. As for the system, the assumptions

Page 8

enable the system to perform without malfunction.

[\ AVATAR y [52 ions | 3 Req | & Analysis | ¥ Design |
[% Environment | $» System |

B|[p | B =@m =[m & z

E T AmUmpt S <System Assumptions = <<Enwitonment Azumption=>
“c?:f'a’ron&:;?wayggz‘ug” ChoiceAlwaysCompleted ! OneDrinkOnhy
Text="The user will pay Text="The user will always choose a drink| Text="The user will akways order
one taken after the payment' anly one drink”
far one drink” Cwrabilib="Permanent* Durabilib="Permanent’
Durahility="Permanent* Source="Model creator Source="Maodel creator
Source="Model creator Status="Apnlied" Status="Applied"
Status="Applied" Scope="Madeling activity" Scope="Modeling activity
Scope="Modeling activity'

| “<System Asumplionss q‘|

“eSystem Assumplion> g |
CurrencyDetector Buttons

<<Envitenment Assumption>>
| Sensors q‘| <<Enviranment Assumption>> q‘

InterfaceAlwaysConnected

Text="Assumption description

The interface is always connected”
Durability="Permanent*
Source="Model creatar"
Status="Applied"
Seope="Modeling actiity”

Figure 8: Environment Assumptions

4.2 Requirements

A requirement is a capability or a condition that the system must satisfy. It can be about
a function that the system shall perform or a performance condition that must be achieved.
Figure 9] shows the standard form and information of a requirement box.

. ==<Requirement>> q‘
1 Requirement_1

D=6

Text="Requirement description:
Double-click to edit*

Kind=""

Risk=""

Reference elements=""

qitnds W

Figure 9: Requirement Box

Requirement name

ID: unique identifier

Text: text requirement

Kind: status

Risk: priority

Reference elements

Page 9

Use cases, which are part of analysis diagrams, can be useful to express functional re-
quirements. However, they are no suitable for non-functional requirements. Requirements
diagrams support introduce text-based requirements, providing a way to express both func-
tional and non-functional requirements. Requirements diagrams are expected to be modeled
after setting up the assumptions for our system.

We will create one or several requirement diagrams defining the requirements that the
coffee machine controller will have. To do this, right click on the panel tab as before,
and select “New Requirement Diagrams”. Just as before, a new diagram tab will appear
underneath. Once again, this diagram tab can be renamed as preferred following the same
steps we used in the assumption diagrams.

For the coffee machine, we will divide the requirements in three parts: the requirements
related to the inputs, the control and the outputs. The first diagram is named “General
Requirement Diagram”. It contains the link between the three parts mentioned above, which
will all have their own requirements diagram.

Figure 10| shows the structural elements available to build the requirements diagram.

[\ AVATAR_Methodology | 3 Assumptions | Si Requirements | - Analysis | 3¥ Design |
[& General_Requirement_Diagram i" & Inputs I/E' Control | = Outputs |

]]| [8]E] [2]=]=] [=] [=] [=]=] [®
1 23 45 678 9 10 1112 13 14

Figure 10: Structural elements of the requirements diagram

1. Edit Requirements Diagram

2. Add a comment: add a comment to the diagram

3. Comment connector

4. Requirement: add a requirement box to the diagram

5. Property: add a property box to the diagram

6. Composition: a relationship who defines the requirements hierarchy

7. DeriveReqt: a relationship who links two requirements of the same hierarchy but at
different levels of abstraction

8. Copy: a relationship that connect a slave requirement a master requirement

9. Refine: a relationship who links used between a requirement that refine another
10. Verify: a relationship who defines how a model element verifies a requirement
11. Element reference
12. Satisfy: a relationship who show that a concept satisfies a requirement
13. Show/hide element attributes

14. Enhance

Page 10

Z<Requiremeant=>= q“

Inputs
<=<Requirement=>
CTRL %
<<Requirement=>
Outputs %

Figure 11: General Requirement Diagram

Figure [TT] represents the general requirement diagram obtained for the coffee machine
controller.

In a similar way to that of the assumptions, a new requirement can be added by selecting
the requirement button shown in Figure[I0} Once created, it can also be modified by double
clicking on it. When the new window pops up, one can provide a description and change the
ID, Type, Risk and Reference attributes of each requirement. The next step was to create the
inputs diagram, the control diagram and the outputs diagram. By using the requirement box
and relationships described in Figure[I0] we obtained the diagrams shown in Figures[12]and

13l

=<Requirements> Y
Requirement_0

D=3
L+ Text="The systern will keep one token as payment
~" | and refund other tokens, it any."
e Kind="Functional*
.7 Risk="Low"
<=rejné=>

<<Requirement>»
Payment L 5

o=1 L

Text="The system will allowthe - #<Requirement-> &

user to inserttokens in the TokenSlot

rKniﬁgigl'rlyfmclional“ k- - - - s=deriveReqt=> _ __ _ fID=4

Risk="Low" Text="The system shall use a taken slot'

“<Requirement>> q‘ Kind="Functional*

Sensors Rigk="Low"

<zRequirements>

Drink_selection %

D=2
Tex="The systerm will allow
the user -0 "
to choose between coffee ortea” =ZieriveRegts=
Kind="Functional" s T
Risk="Low" “ -~ [ID=5

Text="The systemn shall use 2 pushhuttons."
Kind="Functional*
Risk="Low"

=<Requirements > |
uttons G

Figure 12: Inputs requirements diagram

Page 11

2ZRequirements> Y
Controller

D=3 I
Texi="The system will run the machine.”
Kind="Functional’

Risk="Medium"

<<Requirement=>]
Actuators L

D=7
Tewt="The system will transmit T

<ZRequiremants>>
Service_time

L

D=4

serve the drinkin 30 secand "
ind="Functional"
Risk="Low"

Text="Tha system will prepare and

<<Requirements>
Mechanical_bloc

Ay

D=5

mechanical devices "
Kind="Functional"
Risk="Medium"

Text="The system will activate the

“ZRequirements>

Currency_detection

L

D=6

Texi="The systern will verify if the
order is paid."
Kind="Functional*

Risk="Low"

Reference elements=""

ZiRequirements> &
CurrencyDetector ¥

\ErderieReqr:= |

1D=11

Text="The systern shall use a currency detector.”
Kind="Functional*

Risk="Low"

ZiRaquitement &
ChoiceRequest

D=5
Text="The systern will agkthe user =
to choose hetween coffiee of tea.”

N

Kind="Performance" &

Risk="Low"

<=Requirements> &,
RequestForPayment .

==detiveRedqts=

D=8 .
Text="The systern will askthe user (- - - <<tleriveRent-= _ _

infarmations to the user*
Kind="Perfarmance"
Rigk="Low"

to pay for the drink"
Kind="Performance"
Rigk="Low"

<<Requirements» &
SenviceFollowUp !

ID=10 -
Text="The systern will indicate when |2
the drink is ready to be taken
from the machine."
Kind="Functional*
Rigk="Low"

e
==deri\£eﬂeql=>

-
-
.

<<Requirement>>
2 NumericalScreen Gy
_|ID=12

Teut="The systern shall use a nurmerical screen.

Figure 13: Control requirements diagram

Kind="Functional"
< | Risk="Low!"

Figure 14: Output requirements diagram

Page 12

4.3 Use Case

Once again, right click on the panel tab. This time, select the “New Analysis” option, which
will give you a window like the one shown in Figure[I5] We will begin the analysis process
with a Use Case Diagram. To add it, right click on the window and select “New Use Case
Diagram”. This diagram will allow us to represent the system, the actors acting on it and the
different instances or use cases that will be modeled. All these elements can be observed in
Figure[I7} To add each of them you should use the buttons shown in Figure[I6] To change

the names, double click on each on them.

File [dn vAV Code Generation View Tool Melp
Ra@ & | B 8 100% R

o Analysis . Methodology B9 Assumptions B9 Requirements

'y

® i U /T

Remove

Mew Use Case Diagram

New Context Diagram

New Activity Disgram

New Sequence Diagram (old version)
New Sequence Diagram

Executes the AVATAR model checker from an AVATAR design

e e TToo!; /Users/camnnntsague/Deskaop/CoseaMachineSimple.xmi

ol Analysis [B¥ Design

Right click,
and then
click here.

Figure 15: Create Use Case Diagram

%5 Use Case Diagram r@ Activity Diagram rxr.,l'Paymenl r HChoiceAndSemce
el w]- (& [2]= [¢] =[x=z]*

“1234557 38 9 1011

Figure 16: Structural elements of the use case diagram

1. Edit Use Case Diagram

2. Add a comment: add a comment to the diagram

3. Comment connector

R

Actor: add an actor to the diagram

N o W

Add a use case

Add a border: create a system box who defines the boundaries of the system

Actor (Box Format): add an actor box to the diagram

8. Actor <->use case: links an actor to a use case

Page 13

==hctar==
Fushhuttons

CoffeeTeabMachineCaontraller

FPreparelrink

==pctar==

CheckSelection l-.
L

=zinclyde==
==tnclude=»

TokenSlot

Inputs

R b
CheckPayment UL
—Zz=includess .

Infarmclient

==pActar==
mechanicalBlock

==Actar==
MumericalScreen

System Process

Figure 17: Use Case Diagram

Outputs

Page 14

9. Include: a relationship which links a function to a mandatory subfunction
10. Extend: a relationship which links a function to an optional subfunction

11. Specialization: links a ‘parent’ function to a specialized ‘child’ function

In Figure on the left hand of the diagram, we have put the actors that triggers
processing (i.e., inputs), while on the right we have the actors or elements that are activated
as a result of it. The box in the middle represents the enclosed system: everything which
is inside is what a designer promises to implement, i.e. the four bubbles are the use cases.
Use cases are linked to the actor(s) involved in them.

Once the use case diagram is finished, the next step is to create an activity diagram. Just
as before, right click on the diagram tab and select “New Activity Diagram”. In TTool, an
activity diagram is portrayed in the form of what is commonly known as a flowchart, depict-
ing the internal behaviour of the system. The elements that can be added to it are shown on
the button tab and they include activities, partitions, the start and end of the activity, choices
and tabs for whether there is a signal being sent or received.

act] |nitiglize

act) Payrment

J

E@Jrinkﬂelectinn

act) Service

Figure 18: Activity Diagram
In the example shown in Figure [I8] one start, four activities and one junction are used.

After each of the elements is added, they can be edited by double clicking on them. Each
activity box represent an execution stage of the system. In addition, to edit the choice

Page 15

elements, click on each of the brackets or guards that appear on each of the rhombus
connectors and write in the condition that must be satisfied for each option. Finally, the
arrows, or associations, can be added by clicking on the respective button and then by
clicking on a point on the perimeter of each of the elements being linked.

The final stage of the analysis is creating a scenario or sequence, e.g. to show how the
system interacts with its environment. As before, right click on the diagram tab and select
“New Sequence Diagram.” This diagram will allow us to showcase the logical progression
of actions as well as the different instances in which different actors or components come
into play during the execution of the system and of the environment. Using the different
buttons at the top of the window one can add instances, timers and indicate whether the
message being transmitted is synchronous or asynchronous among other elements. To add
an actor, click the “Instance” button and place it on the window. Then, double click as if to
edit. When the pop up window appears, check the box that says “actor”. After setting up
the main structure of the system use the arrows mentioned before to represent the messages
being sent between the different elements, add text describing the process by double clicking
on them after setting them in place. Though not shown in this example, when adding a timer
one must also indicate the amount of time assigned to it and its attributes.

As shown in Figure [19)and [20] the sequence diagram shows a visual description of the
flow of messages and information inside the system. If required, one can create more than
one diagram in the same window, or can add as many sequence diagrams as necessary.

5 Design

Just as with all the previous sections, to start the design, one will right click on the panel tab
and select “New Design”. This will open the window to create a “Block Diagram”— here
we will create the main structure of our system. To add a block, click on the block button
shown in Figure 21} You will create as many blocks as actors/parts you have determined in
the previous parts of the creation process.

1. Edit interaction overview diagram

2. Add a comment: add a comment to the diagram
3. Security pragmas

4. Safety property

5. Performance property

6. Comment connector

7. Block

8. Crypto block

9. Add an avatar firewall
10. Data type

11. Library function

Page 16

%

HumericalScreen

,_..
L
=
=
=
=0
i)
o

FaymentRequest
Y 0 -

COneTaken

FaymentAccepted

Figure 19: Logical progession of the ‘Payment’ sequence diagram

Page 17

7 A

Fushbuttons antroller MurmericalScreen MechanicalBlock

ChoiceRequest

Coffee

g

CofferSemvice

ServiceFallowl
N

Figure 20: Logical progression of the ‘ChoiceAndService’ sequence diagram

[\ AVATAR I y |32 | 38 Requi | & Anayysis | 7l¥ Design |
J’Tﬁ? Block Diagram | |
‘ :Z B |FyEE - B DBe BB B % LR I

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

Figure 21: Structural elements of the block diagram

Page 18

12. Crypto library function
13. Composition connector
14. Port connector

15. Show/hide element attributes

The coffee machine controller has five blocks: the pushbuttons, the token slot, the con-
troller of the machine, the mechanical block, and the numerical screen. The name of each
block can be edited by double clicking on the top part of the block and writing in the desired
name. In addition, every time a block is created, a new tab corresponding to that block will
appear next to the block diagram. We will look further into each of them later in this manual.

Following the creation of the blocks, attributes and signals for each of them will be
added. To do this, double click on the bottom part of the block. A pop up window as
the one shown in Figure 22| will show up. In the ‘Attributes’ section we will indicate the
elements or variables that will interact with that section of the machine and whether they
are integers, timer or Boolean values. In this example only the token slot, the controller and
the pushbuttons have ‘Attributes’. In the two first of them we can find “T” (short for token),
which is an integer. This can be defined by selecting “int” from the drop down menu in the
section indicated in Figure @ In addition, in the two last of them we can find timers.

-1 1 i ! Lo
LA =P [C L [L e
LY e oL Yo agorny e iriimrws
Type in the
name of the
wariable —
Choase “int™
. - or “bool” ta
indicate the
i necessary, assign type of
& value to the variable,
variable here.
e,y — When done,
click here to
¥ Kaww sl { been add the
attribute

Figure 22: Setting attributes of a block

Furthermore, the ‘signals’ represent the information being sent and received by each
component of the machine. On the same pop up window as before, click on the signals tab
on the top. To add a signal, just select whether it is coming in or going out in the box shown
in Figure[23]and then give it a name. If two blocks have communication between them, one
should have the outgoing signal, and the other the receiving signal.

Page 19

At ol by g gy Frmrr =g
Select whetber the e
signal ks coming in = et
o going out N
Assign a name
to the signal
Suibal = g
When done,
click here to
r add the signal

e el b

Figure 23: Setting signals of a block

Finally, one will add port connections by clicking on the respective button shown in
Figure and then selecting a point on the perimeter of the blocks being connected. Next,
double click on the connector; a new window will pop up (Figure [24).

Here you will select the outgoing and incoming pairs of signals and one by one add them
as shown in Figure [24] In addition, you can select whether this message is asynchronous
or synchronous on the boxes in the inferior part of the window. Once all the signals and
connections between each of the blocks are set, we can move on to the diagrams for each of
the blocks. The block diagram created for the coffee machine controller is shown in Figure

Once the block diagram is finished, we will go to the tabs that appeared for each of the
blocks. Here, we will show through a flow chart the process through which each element
goes to complete its specified task. Unlike before, in this case the black dot that indicates
the process is starting is automatically added. We will complete the design from there down.
Also, differently than in the activity diagram created during the analysis, here we can add
the states in which the machine, or part of the machine is, choices, signals being sent and
received and stops. Each of these buttons are shown in Figure 26|

1. Edit AVATAR state machine diagram
2. Add a comment: add a comment to the diagram

Comment connector

> w

Connect two operators together

e

Start: add a starting point to the diagram

6. Stop: add a stopping point which will be the final state when it is reached (the block
instance ‘dies’)

Page 20

Salevt “partnier”
signals and then
A

. -

Sahd—y nmpals Mgy el

il Balahiyia] & =

il i

= — "'m Indicate whether

e communication is
e : synchronous or
asynchronous

Figure 24: Port Connection between blocks

<<hblock>>
TokenSlot

<<hlock>>
Contraller

<<hlock>>

-T:ink

: MumericalScreen
-T:int

n DrinkChoiceTimer : Timer;

~ aut Token(int T)
~in GiveBackToken)

- PrepareDrinkTimer : Timer;

~in CanBeTaken)
~ in ChoiceRequestSignal()
~ in TokenRequestSignall)

~in Tokengint T
~in Coffeal)

~oin Teal)

<<hblock=>
Fushbuttons

~ in Ready)
~ out StatCoffesal)
~ out StopCoffesal)

<<hlock>>
MechanicalBlock

&

- TimeTakenByllserToChoosze : Timer;

~ out StartTeal)
~ out StopTeal)

e B CanBeTaken() B——W- in stadCoffez)

~ out Coffesl)
~ out Teal)
~ in ChoiceRequestSignalz()

~ out ChoiceRequestSignal()
~ out TokenRequestSignall)
~ out GiveBackT oken)

~ in StopCoffesal)
~in StatTeal)
~in StopTeal)

~ aut ChoiceRequestSignalzn ~ aut Ready)

Figure 25: Block diagram

[@9 Block Diagram | %= S | %= Controller | $; Tokenslot | %P
G| & - el & ¢ O = | |2 (x2|« D |§
1 2 3 4 5 6 7 8 L) 10 11 1z 13 1415 16 17

Figure 26: Structural elements of each block diagram

Page 21

7. State
8. Choice: add transitions that can be taken following specific conditions
9. Select random: add an attribute that can give a random value to a variable
10. Send signal: add an output signal
11. Receive signal: add an input signal
12. Library function call
13. Set timer: add a timer that will start when it is reached
14. Reset timer: stop the timer’s clock and reset it
15. Wait for timer expiration
16. Enhance

17. Show/hide AVATAR IDs

Using as reference what was already indicated in the block diagram, we will determine
when messages are being sent and the states in which the machine is before and after each
iteration. The diagrams for the mechanical block, numerical screen, controller, token slot
and pushbuttons can be observed as example in Figures [27]to 31 respectively.

6 Verification

Finally, the last step of the process is to verify that the system we have created works prop-
erly and follows each of the steps we desire it to. In order to do this, we will use the “Syntax
Analysis” tool, which is shown in Figure After you click on it, a screen like the one in
this same figure will appear. There you can select whether you want to check the syntax of
the whole system or individual parts. After this is determined, click on start syntax analysis
and wait a second. After the software is done, it will either pop up an error message like the
one in Figure [33] meaning that the system has not been designed correctly; or if no errors
are found, the “Interactive Simulation” button (Figure 32)), which was once greyed out, will
now be blue and you will be able to click on it.

1. Syntax Analysis
2. Select elements to analyze
3. Start analysis

4. Interactive Simulation (currently greyed out)

If this is the case, then you will click on it and a window like the one in Figure @] will
appear on your screen. Click on run simulation and wait. The software will then go through
a full iteration of the machine and show each step in the way portrayed by Figures |35|and
[36 below. This tool is very useful in that it allows us to see how the different parts of the
machine communicate as well as each step of the process programmed.

Page 22

|

| WaitingForOrder |
StanCoffes() \/ StartTeal
| PreparingCoffee | | PreparingTea |
Y Y
StopCoffes) StopTeal)
Ready)» Readyi:

Figure 27: Mechanical block diagram

!

| Humericalscreenloop

.

TokenReguestSignal() ChoiceRequestSignald CanBeTaken |

| HumericalScreenl oop /

Figure 28: Numerical screen diagram

Page 23

!

WaitingFor Activity

b
F

Y

TokenReguestSianal()

¥

VaitingFor Token |

Y

| ChoiceReguestSignal()

Y

[setTimer(DrinkChoiceTimer, 30} X

| ChoiceRequestSignal 2

v

WaitingForSelectionOr Timer ToExpire

gxpire{DirinkChaiceTimer |><

Figure 29: Controller diagram

' v

|reset(DrinkChniceTimer} X |reset(DrinkChc|iceTimer) X

StartCoffead) StartTea()

v

|setTimer{PrepareDrinkTimer,EE) X |setTimer(F'repareDrinkTimer,ES)

"

| PreparingCoffee | | PreparingTea |

expire(PrepareDrinkTimer |>< expireiPreparaDrinkTimer) |X

StopCoffea) StopTeald
Ready(Readyd)
CanBeTaken) CanBeTaken()

Deliverin

Figure 30: Token slot diagram

Page 24

WaitingForDrinkChoice

Y

ChoiceRequestSignal 20 |

Y

|setTimer(‘rimeTakenByUserTnChnnse,SD} E

expireiTimeTakenByllserToChoose) |><

PushButtonsl oop

Figure 31: Pushbuttons diagram

File Edit V&V Code Generation View Tool Help

Bala &

Y

ChoiceReguestSignal 20 |

1@4

ki

®| |9 & | 100% | & & &
@ TTool: C:\Users\UtilisateuriDes }(’ . AVATAR_| =3 |38 | & Analysis rgs Design |
&\ AVATAR | (Avata =
o[Assumpions (vataraD) | || AP Block Diagram [5 [+ | (S | (RS e R ‘
- 38 Requirements (SysML Requi | © | m mal (m (B B |=|
o fui AVATAR Analysis: Analysis i b |7 & -W w- L T
o B9 Design (Design) [=]
o L& syntax analysis
© JER Graphs @ Choosing blocks to validate X
(= :é Invariants Blocks ignored Blocks taken into account
L
Search result <<block Block: MechanicalBlock <<hlock>> ™
Tokensi Block: Numerical Screen NumericalSereen =
Tl 1 STeint Block: Controller
— r—— Block: TokenSlot e
gﬁ% ~ out Token(int Ty Block: Pushbuttons —in O hoinaR aquastaignal)
~in GiveBackT oken() ~ in TokenRequestSignal)
<<block>> m
<s<hlock L M
g . MechanicalBlock
Pushbut
TimeTakenBylseiToChoost b M. in StatCottes
~ in StopCoffeet
~ out Cotieen ~ in StartT a0
@ Optimize specification ~in StopTeal)
~ in CholceRequestSignal 2 ~ ot Ready)
| . Ccancel ‘ ‘ L3 start syntax Analysis -‘[
141 i [|

Figure 32: Syntax analysis

Page 25

Syntax analysis failed X

® The Avatar modeling contains several errors

Figure 33: Syntax analysis error message

| £ Interactive simulation — O %

‘ . Terminate simulation and quit

Commands ‘| Simulation information
Control | Save trace : Status: Stopped Time: 0 Transactions: 26 Coverage: 13.2%

IE IE] Latencies | €1 Randomness | €1 Asynch.msg |
| ~N | [@ Transactions |° €lMetstates | &1 Displayed blocks
ﬁ Options [#]Blocks 1 £] Variables

Start Simu|ati0n [¥] Animate UML diagrams
Nb of steps: 1

[] Show AVATAR IDs on UML diagrams

[_] Show hidden state in sequence diagram

Pending transactions :
in Block Controller: [SYNCHRO]Sending signal TokenRequestSignallD= | | | [¥] Automatically open active state machine diagram

Trace in sequence diagram # of transactions:Index of last transaction:

Automatically execute empty transitions

Automatically enter states

<] i D

MechanicalBlack MumericalScreen Controller TokenSlot Fushbuttons Timer__DrinkChoice |
@0 Simulation begins,
ptaitingF arQrder scroll down to see
the rest of the steps |
_ 0 hd
<] Il I [

Figure 34: Interactive Simulation

Page 26

MumericalScreen Controller TokenSlot Pushbuttons Timer__DOrinkChoice Time Tintantr| Crinkfeer T UserroChoose__F

MumericalScreenlLoop
\VWaitingForToken
WaitingForDrinkChoice

‘TDkEnF it 10}

MumericalScreenloop

[WiaitingForToken

“ Token(1
'Chmceﬁegueﬁlﬁlgnal

MumericalScreenlLoop
|__timervalue = 30

o

el DrinkChoiceTimer_set{$0,

ChoiceRequestBignal 20

WaitingForSelectionOrTimerToExpire

__timeralue = 30

setTimeTakenBylJserToChoose| set(30) »

[gﬁl
(]
(waitd set

expire_expire_ TimeTakenByUserTqChoosed

expite_expire_DrinkChoiceTimel

PushButtonsLoop

GiveBackToken(

rActivity

[Waitin:

‘TDkEnF it 10}

MurnericalScreenloop

[WaitingForToken

Figure 35: Simulation steps (part 1)

Page 27

@32

@57

Prepari

‘Chnme”

Token(1)

Je51Signal)

MurnericalScreenloop

WaitingFarSelecti

|__timervalue =30

o

el DrinkChoiceTimer_set(30;

ChaiceR 20

OrTirmerTaExpire

respt DrinkChoiceTimer_reset])

|__timervalue = 25
zet_Prepare0rinkTimer_set{25)

PreparingTea

expire_expire_PrepareDrinkTimerd)

e StanTeag
ingTea
StopTeal
Redy(

CanBeTaken(

MumericalScreenlLoop

TokenReguestSignal()

MumericalScreenloop

[aitingFarToken

Figure 36: Simulation steps (part 2)

[wraitd set]

Page 28

6.1 Reachability Graphs

Another interesting feature in the TTool software is the ability to graph or map the processes.
This generates a graph that allows us to see all the different pathways that the system follows
to reach its final state, each showing a different scenario. In addition, one can select a specific
initial and final state, which simplifies said graph and gives a neater depiction of the process.
Figure [377|shows an example.

(W alletinbO fCoims= f&SF\WMO) 0.0
5
1

i(TeaButtory) [10 ...10]
! push_?pushCoffaeButton() [0 ...0]

.chﬁeeM:rm%mgssh 010 e,mm .01
putCnm 7gateoin(1) [0 -0 roopy, =) [0..0]
tejectCoin_1g oln([0..01

i alletinbOfComs—
i(W all et/ nb 0 fCains= k0 fCoins-x) [0 ... 20]
(W allet/nbOfCoins=rp0 foins) [50 ... 50
4
il Co¥ffzeMachirig/) [50...50]
ilCoffeeMachine/nFofCoins=0) [0 ...0]

il Coffe eMa chine/nbO fColns= nb OfCoins+x) [0 ...0]
utC oin_ Gin(1) [0...0]

1putCoin_ gd: ain(1) [0 ...01

b OfCoins+x) [0...0]

10

Figure 37: Reachability graph

6.2 Safety pragmas

Safety pragmas can be inserted in the model. These pragmas follow the following grammar.

(pragma) = (path) (state) (property)
| (property) (leadsto) {property)
(path) = ‘A |‘E
(state) = ‘<>’ | ‘[T
(leadsto) n= >
(property) = (stateproperty)
| (intproperty)
| (boolproperty)

| {property) (binaryop) {property)

Page 29

(stateproperty) ::= ‘BlockName.stateName’

(intproperty) ::= (intexpr) (intcomparator) (intexpr)

(boolproperty) ::= (boolexpr) (boolcomparator) {boolexpr)
| (boolexpr)

(intexpr) ::= ‘BlockName.integerattribute’
| (intvalue)

(intexpr) ::= ‘BlockName.booleanattribute’
| (booleanvalue)

(binaryop) n= &[N

(intvalue) .2 (integer)

(booleanvalue) : ‘“true’ | ‘false’

(intcomparator) = S| == 2

(boolcomparator) = == 1=

6.3 Latency Analysis

Many real-time safety-critical systems interact continuously with the environment and users.
New input from the outside world is processed by the system, which then effectuates a
response observable in the real world. The timing of such responses can greatly impact
functionality and safety.

Latency analysis is performed in multiple steps. First, the quantitative requirement on
latency must be defined. Next, the text requirement must be translated to determine which
modeling elements the critical events refer to, after which latencies can be measured in
simulation. The results are then conveniently displayed on the modeling diagrams. This
example uses the updated Coffee Machine model that can be found in the TTool sample
modeling repository.

Figure [38] shows a requirement related to timing: The Coffee Machine must take less
than X seconds to finish a drink command after payment has been received.

The operators relating to this requirement are the last ‘getCoin(x)’ and the idle state after
processing ‘WaitingForFirstCoin’. Figure [39)shows how the two operators are tagged with
‘Latency Checkpoints’, in the form of blue flags.

After syntax analysis, run interactive simulation, and then on the Latency Panel (Figure
40), we indicate that we should measure the latency between these two checkpoints by se-
lecting the operators and clicking the ‘Add latency’ button. After running 100 steps of the

Page 30

<<Requirement>>
LatencyCoffeeMachine

ID=17

Text="The Coffee Machine
must take less 10 seconds
ing each
order after payment is

to finish process

received."

Kind="Performance"

Figure 38: Latency Requirement for Coffee Machine

RL

P Sgetcornix |
v AL

Beverage

>pushCoffeeButton()_|

!

WaitingForSelection

\ 4

after (coinDelay)
\ oL

| ejectCoin(nbOfCoains) »

>pushTea

Button()_l

after (coffeeMinDel
nbOfCoins = 0
beverageReady()

,coffeeMaxDelay)

nbOfCoins = 0

after (teaMinDefay,teaMaxDelay)
nbOfCoins =
beverageRegdy()

¢ v ¥

r WaitingForFirstCoin |

Figure 39: Latency Checkpoints in State Machine Diagrams

Page 31

@ Terminate simulation and quit

Commands Simulation information
1 ((Control | save trace Status: Stopped Time: 0 Transactions: 14 Coverage: 24.5 %
«| |4 TR EYEN Options | € Blocks | € Variables | €] Transactions | €] Met states | €] Displayed blocks |] Latencies | & "€ Asynch. msq |
Nb of steps: 1 Checkpoint 1:
Checkpoint 2: state0-WaitingForFirstCoin:1818 | v |
@ Add latency
Bendingltranzactions] Transaction 1 Transaction 2 | Min Max Average St Dev.
in Block Wallet: Transition (contentOfWallet (nbOfCoins), ...)
il IL ID
wallet TeaButton freeButt
@0
WattingForFirstCoin
Kl D
Ready...

Figure 40: Latency Measurement Panel

simulation, the minimum, maximum, average, standard deviation of the latency measure-
ments is displayed as shown in Figure 4]

Simulation information
Status: Stopped Time: 715 Transactions: 342 Coverage: 94.7%

options | € Blocks | & Variables | &1 Tr: i | € Met states | €] Displayed blocks | €] Latencies | & & Asynch. msg |

Checkpoint 1:
Checkpoint 2:

Transaction 1 T Transaction 2 T Average T Stoev
Receive signal-getCoin:1381 [state0-WaltingForFirstCoin: 1385 o o 6 s

Figure 41: Latency Results

7 Conclusion

All in all, TTool is a useful software, which allows the user to generate systems using
SysML. By guiding the user through each of the steps of the process (Methodology, As-
sumptions, Requirements, Analysis and Design) it serves as a platform for better structured,
and comprehensive designs. These models provide all the information required to under-
stand the present state of the design and enable easy changes in the future. It is straight-
forward and intuitive and it has many more features than the ones shown in this manual,
therefore making it a very complete tool in the development and simulation of engineering
designs.

Page 32

	Preface
	Table of Versions
	Table of References and Applicable Documents
	Acronyms and glossary

	Introduction
	Getting Started
	Start new project

	Analysis
	Assumptions
	Requirements
	Use Case

	Design
	Verification
	Reachability Graphs
	Safety pragmas
	Latency Analysis

	Conclusion

