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Abstract. In this technical report, we present a quantitative analy-
sis of the development time spent when designing data-flow embedded
systems at Electronic-System Level (ESL), in the ¥-chart and in the Y-
chart approaches. We compare implementations of these approaches in
TTool/DIPLODOCUS, a UML/SysML toolkit for the hardware/software
co-design of radio signal processing embedded systems. This analysis
quantitatively evaluates the ratio between development time spent in
the mapping and Design Space Exploration (DSE) phases of the ¥-chart
over the Y-chart. We numerically evaluate this analysis in the context of
the design of the physical layer of a ZigBee transmitter (IEEE 802.15.4
standard).

1 Introduction

Today’s embedded systems are more and more realized with architectures where
the processing operations, i.e., data and control information, are executed in par-
allel over a network of interconnected subsystems (e.g., Multi-Processors Systems
on Chip, MPSoC, electronic equipments in automotive and avionic systems ).
The performance, cost and time-to-market of these systems is not only driven by
the design of data-processing operations (computations) but also by the design
of data-transfer operations. Therefore, it is of utmost importance to account for
the design of these data-transfer operations, communications, in the early phases
of a design process.

Since the late nineties, the Y-chart [1,2], Fig. 1, is one of the dominant Model
Driven Engineering (MDE) approaches that guides the automation of design
and Design Space Exploration (DSE) of embedded systems for data-dominated
applications. In this approach communications are typically described both in
an application model (i.e., the system’s functionality, box 1.1 in Fig. 1) and in
an architecture model (i.e., the system’s resources, box 1.2 in Fig. 1). In the
application model, communications are represented in the form of logical de-
pendencies between computations (e.g., channels, events). In the architecture



(platform) model, communications are described in the form of the services pro-
vides by hardware and software resources (e.g. DMA engine, bus, CPU and its
Operating System) A design is then evaluated (Design Space Exploration, box 3
in Fig. 1) based on a mapping model, box 2 in Fig. 1, that captures a selection
of the architecture resources that execute the functionality of the application
model.

However, when creating a mapping model it is frequent to incur into a com-
munication mismatch between the description of communications contained in
the application and in the architecture models. This is due to the mismatch
between the primitives and operational semantics used to describe communica-
tions in the Model of Computation, MoC, of the application (e.g., point-to-point
data channel with blocking read()/write() operations) and those in the Model of
Computation! of the architecture (e.g., data transfer via DMA and bus trans-
actions).

(1.1) Application Architecture (1.2)
model model
2
“)
Mapping
model(s) @)
Models 3)
improvement
“4) Design Space
Exploration
Realization of the

design solution (5)

Fig. 1. The Y-chart approach for the design of programmable embedded systems

Several implementations of the Y-chart approach exist that differ in terms of
the semantics of the modeling language used to specify a system and or in terms
of the purposes and techniques of the DSE phase. Nevertheless, this commu-
nication mismatch still remains an open issue. Typically, it is circumvented by
designing communications after mapping the application onto the architecture,
as the mapping of communications depends on the mapping of computations.
However, this strategy heavily impacts the modeling phase (i.e., portability)
and Design Phase Exploration phase (i.e., rapidity in finding optimal design
solutions). Communications that are modeled after the mapping of computa-
tions cannot be ported to other target platforms, without additional re-design
steps that are time consuming and error-prone (labels 4 in Fig. 1). The DSE
of communications occurring after the DSE of computations, local optima are
much more likely to be found as a comprehensive view of all design constraints

! The Model of Computation of the architecture model is also referred to as Model of
Architecture, MoA



is missing.

To solve the communication mismatch, we proposed a novel design approach: the
W-chart approach [6], where communication protocols and patterns are modeled
independently of the application and architecture models, before mapping.

The structure of this technical report is as follows. Section 2 presents the ¥-chart
approach and details its implementation in TTool/DIPLODOCUS. Section 3
describes the design of the physical layer of the ZigBee transmitter. Section 4
concludes this report with a comparison between design in the ¥-chart and in
the Y-chart and presents the quantitative analysis of the development time.

2 The ¥-chart design approach

The W-chart, Fig. 2, is an extension of the Y-chart, Fig. 1, where a third input
is added to capture communication protocols and patterns independently of the
description of communications that is present in the application and architecture
models.
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Fig. 2. The V¥-chart approach for the design of parallel and distributed embedded
systems.

Communication protocols and patterns can be modeled independently of a sys-
tem functionality (i.e., application) and resources (i.e., platform) as illustrated
by the following explanation. A communication protocol can be defined as a
set of rules for the exchange of information between abstract components (e.g.,
master, slave, controller). As the rules of a communication protocol are specified
regardless of the particular characteristics of an implementation of these abstract
components (e.g., an ARM CPU, an Intel CPU), a communication protocol can
be modeled regardless of the specific resources of a target platform. Secondly,
a protocol specifies the rules to transfer data or control information regard-
less of the algorithm and the processing operations that produce/consume this
information (e.g., Fast Fourier Transforms, vector operations). Therefore, a com-
munication protocol can be described independently of an application model.



From the viewpoint of DSE, expressing communications independently of the
platform and application models implies that the performance impact of com-
munication protocols and patterns can be evaluated earlier, faster and better
with respect to the case where the specification of communications depends on
the application-platform models. In this case, because of the communication
mismatch, the resulting design flow is forced to rely on the successive refinement
of the application-platform models. As a consequence, at each refinement step,
only partial architectural trade-offs can be evaluated that do not account for the
performance impact of both communications and computations. To retrieve the
overall performance characteristics of the system under design, the user is forced
to go through the complete set of refinement steps for more specific references).
The development time and cost of (re-)iterating the design process when the
overall system performance does not meet the desired requirements are higher
and result into a slower and more expensive DSE.

The ¥-chart approach is described by the following enumerated steps, where
each number points to the corresponding label in Fig. 2. In spite of the ordering
associated by the numbers, steps 1.1-1.3 can be conducted in any order as the
corresponding models can be created independently of each other. On the con-
trary, the numbering of steps 2-5 coincides with the order dependencies of the
design flow.

1.1 Create a model (application) of the system’s functionality (e.g., a video-
compression algorithm). This model must be created regardless the resources
that are available for execution purposes (i.e., hardware or software re-
sources) and must express all potential parallelism between operations. This
model must express both the processing of information (e.g., computations)
and the dependencies (e.g., communications) between these processing op-
erations.

1.2 Create a model (architecture or platform) of the resources (e.g., bus, CPU,
memory, middleware, OS) to support the execution of the applications’
functionality. This model must express the topology of the available hard-
ware/software resources, the services that these resources offered (e.g., a bus
transaction, and operating system call) as well as the costs of these services
(e.g., in terms of silicon area, power consumption, computational power).

1.3 Create a model (communication) describing the communication protocols
and patterns used/needed by the target platform to transfer information
between processing operations. Such an algorithm must be expressed inde-
pendently of the semantics associated to the communications described in
the application model (i.e., dependencies between computations). Similarly,
it must also be expressed independently of the specific semantics of the com-
munications expressed by the platform model’s resources and the services
(e.g., bus, CPU, memory, middleware, Operating System).

2 Couple each application and communication models to the architecture model
(mapping). In this step, a mapping model associates an entity requesting a
processing service in the application models (e.g., a data-processing oper-



ation, a control task) to a resource providing the corresponding service in
the architecture model (e.g., an Application Specific Integrated Circuit, a
general-purpose CPU and its Operating System). Similarly, an entity re-
questing a communication service in the communication models (e.g., a
master) is coupled to a resource providing the corresponding service in the
architecture model (e.g., a DMA controller).

3 Explore the design space (e.g., via simulation, formal verification) by eval-
uating the compliance of the mapping model to a set of pre-defined design
requirements (e.g., silicon area, power consumption, computational power),
box n. 3 in Fig. 2).

4 In case the mapping models do not meet the requirements, the overall design
is modified in order to find alternative solutions (label number 4 in Fig. 2).
The application and communication models are arranged so as to express
the same functional behavior in a different way. In the architecture model,
existing resources are re-structured or new resources are introduced. In the
mapping model, new associations between the application, the communica-
tions and the architecture are explored.

5 The above steps are repeated iteratively until a solution is found that satis-
fies all design requirements. At this point, the resulting design is passed to
the implementation teams that realize it in terms of hardware and software
components.

2.1 The P-chart approach in TTool/DIPLODOCUS

TTool/DIPLODOCUS [7,8] is a UML/SysML framework for the hardware/-
software co-design of data-dominated emdedded systems.

In TTool/DIPLODOCUS, an application model is a composition of SysML Block
Definition and Block Instance diagrams that describe a data-processing algo-
rithm as a set of blocks interconnected by data and control dependencies via
ports and channels. The internal behavior of each block is described by a SysML
Activity Diagram. An application is described in terms of the two following
abstraction principles:

— Data abstraction: only the amount of data exchanged between application
blocks is modeled. Internal decisions that depend on the value of data are
expressed in terms of non-deterministic and static operators (i.e., conditional
choice based on the value of a random variable).

— Functional abstraction: algorithms are described using abstract cost opera-
tors that express the complexity of processing data in terms of the number
of operations required to execute them (e.g., number of integer operations).

A platform model is denoted using a UML Deployment Diagram that repre-
sents a set of interconnected resources, e.g., bus, CPU and its operating system,
DMA, memory. These resources are characterized by performance parameters
(e.g., the scheduling policy and the number of cores for a CPU) that are used
for DSE (e.g., simulation, formal verification) and by implementation character-
istics (e.g., addresses of memory areas) that are used for rapid prototyping (i.e.,



control code synthesis).

A communication model is also called a Communication Pattern (CP) [6]. A CP
is composed of SysML Activity and Sequence Diagrams. An Activity Diagram
is used to capture the structure and dependencies between the activities that
describe the algorithm of a communication protocols (e.g., program a DMA, ex-
ecute a bus transaction). Each of these activities is then described either directly
by Sequence Diagrams or recursively via other Activity Diagrams. Activities are
composed by operators to describe concurrency, sequencing, choice and itera-
tion. The latter two are governed by global control variables. The interface of a
Communication Pattern is given by the top-most Activity Diagram, called the
main Activity Diagram. The Sequence Diagrams of a Communication Pattern
describe the way components (e.g., master, slave, controller) interact in order to
execute an activity. The lifelines of instances of a Sequence Diagram are of three

types:

— A storage component is an architecture unit whose main functionality is to
store input/output data produced or consumed by a processing operation,
e.g., a RAM memory, a buffer.

— A transfer component is an architecture unit whose main functionality is to
physically move data items between components, e.g., a AMBA bus, a CAN
bus, a DMA.

— A controller component is an architecture unit whose main functionality is
to coordinate a data transfer by configuring a transfer component, e.g., a
Central Processing Unit, a microcontroller, a Digital Signal Processor.

Interactions between lifelines are described via the exchange of parameterized
messages (e.g., Read(), Write()) that represent an abstraction of the protocol
signals.

A mapping model is created from an instance of the platform model where
dedicated UML artifacts are added to map the computations and Communica-
tion Patterns. The abstract cost operators are assigned a value according to the
performance characteristics (e.g., operating frequency) of the platform’s units.
TTool/DIPLODOCUS allows a user to map functions that belong to different
functional views, namely from different application models.

Design Space Exploration in TTool/DIPLODOCUS evaluates the performance
of a mapping solution by simulating the workload of computations and data-
transfers [9]. A formal verification engine [9] is also available to verify system
properties (e.g., liveness, reachability, scheduling). DSE can be performed both
manually via the tool’s Graphical User Interface or automatically via a set of
scripts that configure the DSE engine to evaluate different mapping alterna-
tives.

The above abstraction principles have been defined as TTool/DIPLODOCUS
targets early design and DSE, when not all the details about a system’s applica-
tion (e.g., value and type of data) and platform (e.g., Operating System, size and
policy of cache memories for a CPU) are known. The validation of the effective-
ness of these abstractions has been described in [10], where TTool/DIPLODOCUS
was used for the design of the physical layer of a LTE base station jointly with



Freescale Semiconductors. The resulting design in TTool/DIPLODOCUS lead
to performance results that differed by only 10% with respect to the final imple-
mentation. To obtain these performance figures, design in TTool/DIPLODOCUS
required only a few weeks, whereas manual development of a functionally equiv-
alent system amounted to 6 months.

In the next section, we describe the design of the physical layer of a ZigBee
transmitter (IEEE 802.15.4) in the ¥-chart implementation of TTool/DIPLODOCUS.
We also compare a design of the same system in the Y-chart implementation of
TTool/DIPLODOCUS and quantitatively evaluate the gain between the two
approaches in terms of development time.

3 Case Study

In this section, we deploy our implementation of the W-chart in TTool/DIPLO-
DOCUS to design the physical (PHY) layer of a ZigBee (IEEE 802.15.4 stan-
dard) [4] transmitter. The IEEE 802.15.4 standard specifies both the MAC and
the PHY layers of the IEEE 802.15.4 protocol. It is a standard for low-rate Wire-
less Personal Area Networks (WPANSs), which are used to convey information
over relatively short distances. ZigBee has been deployed for several applications
which implement some Wireless Sensor Networks (WSN) for building automa-
tion, remote control, health care, smart energy, telecom services.

Among the different schemes that exist for a ZigBee transmitter, derived from
the IEEE 802.15.4 standard, we selected the one proposed in [5] displayed in
Fig. 3, because of its simplicity in terms of implementation.
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Fig. 3. The functional block diagram of the ZigBee transmitter as proposed in [5]

3.1 The platform

The target hardware architecture for our case study is Embb [3], a generic base-
band architecture dedicated to signal processing applications.

Fig. 4a shows the UML Deployment Diagram of the Embb architecture, as mod-
eled in TTool/DIPLODOCUS. Embb is composed of a Digital Signal Processing
part (DSP part) and a general purpose control processor (the main CPU). In the
DSP part, left-hand side of Fig. 4a, samples coming from the air are processed in



parallel by a distributed set of Digital Signal Processing Units (DSPU1 through
DSPUn) interconnected by a crossbar (Crossbar). Fig. 4b illustrates the inter-
nal architecture of a DSPU: each unit is equipped with a local micro-controller
(1C) that allows to reduce interventions of the main CPU, a Processing Sub-
System (PSS) as computational unit and a Direct Memory Access controller
(DMA) to transfer data in and out of the DSPU’s local memory (the Memory
Sub-System, MSS). The latter is mapped on the global address map of the main
CPU and is accessible by the DMAs, the uCs and the system interconnect. The
system interconnect permits exchanges of control and data items: it is composed
of a crossbar (Crossbar), a bridge (Main Bridge) and a main bus (Main Bus).
The system interconnect is shared between the DSP part and the main CPU,
where the control operations of an application are executed. The main CPU is
in charge of configuring and controlling the processing operations performed by
the DSPUs and the data transfers. The main CPU disposes of a memory unit
(MAINmemory) and a bus interconnect (MAINbus). The latter is linked to the
DSP part via the Main Bridge.

To implement the Zigbee transmitter, we configured Embb with four Digital
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Fig. 4. The UML Deployment Diagrams of Embb. Part (a) displays the global archi-
tecture of a Embb instance with its Digital Signal Processing part (left-hand side) and
main CPU (right-hand side). Part (b) depicts the internal architecture of each Digital
Signal Processing unit

Signal Processing Units:

— Front End Processor (FEP): it implements Discrete Fourier Transform and
vector processing operations.

— Interleaver (INTL): it implements permutations (i.e., interleaving and de-
interleaving) of sequences of data samples.

— Mapper (MAPPER): it transforms a frame of input symbols into a frame of
complex numbers representing the points of a 2D constellation diagram, via
Look-Up-Tables.

— Analog to Digital-Digital to Analog Interface (ADAIF): a dispatcher that is
capable of both receiving and transmitting up to 4 streams from A/D and
D/A converters.



3.2 The application

Fig. 5 shows the TTool/DIPLODOCUS model that represents the functionality
of our implementation for the ZigBee transmitter. Here, the block labeled Source
produces the data to be transmitted in the form of a flow of bits. These data
are then converted to symbols by the Symbol2ChipSeq block. In this block, we
model the mapping of each incoming 4-bits symbol to one of the 16 sequences
of 32 chips as defined by the IEEE standard 802.15.4. The Chip_to_Octet block,
then transforms each incoming chip (bit) of a chip sequence into an unsigned
8-bits integer as expressed in equation 1:

{0;1} — {0x00; 0x01} (1)

Chip_to_Octet also separates the even-indexed chips that are used to modulate
the in-phase (I branch) carrier component from the odd-indexed chips that are
used to modulate the quadrature (Q branch) carrier component. The output is
then transformed by means of a Component Wise Lookup (CWL block) that
maps unsigned 8-bits integers to signed 16 bits integers as expressed by equa-
tion 2:

{0x00; 0x01} — {Oxf£fff;0x0001} (2)

At this point, given the separation of the I and Q branches, their pulse shaping
can be executed independently. The application graph exposes this parallelism by
forking the output data of block CWL to two distinct Component Wise Product
(CWP) blocks, CWPI for the I branch and CWP_Q for the Q branch. These
blocks multiply the input samples with a half-sine wave to realize the O-QPSK
modulation. The quadrature shift between the I and Q branches is implemented
by means of an offset between the memory addresses of the output samples. This
results into a frame of complex samples (16 bits for the real part and 16 bits for
the imaginary part) that is then collected by block Sink and transmitted over
the air.

Each block of the model in Fig. 5 is composed of two tasks: one modeling the
data-processing and one modeling the related control operations. By convention
we name the data-processing tasks with a heading X that stands for eXecution
and the control tasks with a heading F that stands for Firing.

3.3 Communications

The communication mismatch Communications are described as: (i) point-
to-point data channels between tasks of the application model and as (ii) read/-
write operations performed by CPU and DSP units to/from memory units in
the platform model. Therefore, communication mismatches arise when data are
transferred via paths, in the platform model, that encompass a sequence of
more than one pair bus-bridge between a source CPU/DSP and its destina-
tion memory. For instance, when data are transferred (i) from MainMemory to
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Fig. 5. The TTool/DIPLODOCUS model of the ZigBee transmitter

any of the DSP local memories and vice-versa, and (ii) from a DSP local mem-
ory to any other DSP local memory. The only case in which there is a match
between the application MoC and the architecture MoA is given by the path
MainCPU-MainBus-MainMemory or by the path that links any DSP PSS to its
local memory.

The platform’s communication protocols and mechanisms Data in Embb
are transferred in one of the two following ways: (i) via a DMA transfer (to up-
load data to process in MSS and to download processing results) and (ii) via
load/store instructions issued by the main CPU (i.e., General Purpose Control
Processor) to read/write data from/to the main memory.

Communication Patterns As described above, the communication protocols
and patterns that we need to model are based on DMA transfers with interrupt
mechanisms. In these models, described below in the next paragraph, we repre-
sented the interrupt signal that is sent by a DMA controller to a CPU controller
as the message TranferTerminated().



Modeling a DMA transfer with Communication Patterns The main Ac-
tivity Diagram of the Communication Pattern for a DMA transfer is illustrated
in Fig. 6a. In this diagram we decomposed the communication protocol in three
Sequence Diagrams: first the data transfer is configured (ConfigureTransfer in
Fig. 6a), then data are transferred (TransferCycle in Fig. 6a) and the data trans-
fer is terminated (TerminateTransfer in Fig. 6a). Data are transferred iteratively,
as expressed by the for-loop operator, based on the value assigned to the control
variable counter in diagram ConfigureTransfer.

The Sequence Diagram ConfigureTransfer is depicted in Fig. 6b. Here, we model
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Fig. 6. The main Activity Diagram of a DMA data transfer (a), Sequence Diagram
ConfigureTransfer (b).

how a generic CPU unit configures the DMA controller unit. These two units
are represented as two instances of type controller, interconnected by an in-
stance of type transfer. The CPU instance sends the source and destination
addresses as well as the amount of data to transfer as parameters of the message
TransferRequest () to the DMA controller, via the transfer instance. The DMA
controller, upon reception of the message, assigns variable dataToTransfer to
counter. The value of these variables is not known at modeling phase as CPs
are independent of the data dependencies in the application model. A value will
be assigned at mapping phase.

In the Sequence Diagram of Fig. 7, TransferCycle, we model one DMA transfer
cycle. For this purpose we instantiate the DMA controller of Fig. 6b, a source
and destination storage instances interconnected by two transfer instances. In
this diagram, the DMA controller reads samples out of the source storage in-
stance via a parameterized Read () message. Subsequently, it writes data to the
destination storage instance via a Write() message and decrements the control
variale counter that governs the for-loop of Fig. 6. As the values of parame-
ters size, sourceAddress and destinationAddress depend on the architecture
units, they will be assigned a value when mapping the instances onto DMA and
memory units. The message parameter size defines the amount of data that the
DMA channel can transfer per each transfer cycle.

In the Sequence Diagram TerminateTransfer of Fig. 8 the DMA controller in-
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Fig. 7. The Sequence Diagram TransferCycle of Fig. 6a.

forms the CPU instance that the transfer is terminated via an acknowledgment
message. Another novel Communication Pattern that we need in this case study

CPU_Controller Transferinstance_4 DMA_Controller

TransferTerminated()

TransferTerminated()

Fig. 8. The Sequence Diagram TerminateTransfer of Fig. 6a.

is the one depicted in Fig. 9a. Here, the main Activity Diagram captures a mem-
ory copy transfer. This transfer is used in the context of Embb to model a data
transfer from the MainMemory to the local memory of any DSP unit, via a store
operation issued by the MainCPU.

Additionally, we used the CP illustrated in Fig. 9b. This model captures a pair
of sequential DMA transfers and can be used to model a copy operation from
one source storage to two different destination storages. The main Activity Dia-
gram of this Communication Pattern is composed of two references to Activity
Diagrams, that each describe a DMA transfer as the one illustrated in Fig. 9b
(DMATransferl).

3.4 The mapping

We first map the computations of the application model. Such a mapping results
in each control task (e.g., F_.Symbol2ChipSeq) being executed to the Main CPU
unit and the data-processing tasks (e.g., X_Symbol2ChipSeq) being executed to
the DSPUs PSS. Secondly, the memories where to store input/output data are
chosen. This results into a mapping where the local memory of each DSPU is
used to store the input/output data for the computations that have been mapped
onto the DSP’s Processing SubSystem, e.g., task X_Symbol2ChipSeq is mapped
to the Mapper PSS, the input/output data are mapped to the Mapper local
Memory SubSystem (MSS).

From our library we instantiate and map 4 Communication Patterns:
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Fig. 9. The main AD for a CP modeling a CPU memory copy (a). The main AD for a
CP modeling the sequence of two DMA transfers (b). Part (c) shows the AD referenced
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TransferCycle

— CP01: a memory copy CP that transfers the output data of task X_Source.
It is composed of: 1 controller instance (CPU_Controller), 2 storage instances
(Src_Storage, Dst_Storage) and 2 transfer instances.

— CP02: a DMA CP that transfers the output data of X_Symbol2ChipSeq. It
is composed of: 2 controller instances (CPU_Controller, DMA _Controller), 2
storage instances (Src_Storage, Dst_Storage) and 4 transfer instances.

— CP03: a DMA CP that transfers the output data of X_Chip2Octet. It is
composed of: 2 controller instances (CPU_Controller, DMA _Controller), 2
storage instances (Src_Storage, Dst_Storage) and 4 transfer instances.

— CP0/: the sequence of two DMA CPs that transfer the output data of
X_CWPI and X_CWP_Q. It is composed of: 4 controller instances (2 CPU -
Controllers, 2 DMA _Controllers), 4 storage instances (2 Src_Storage, 2 Dst_Storage)
and 8 transfer instances.

Table 1 and Table 2 show the mapping of the above Communication Ptterns
onto the platform units of Fig. 4.

Table 1. The mapping of the CPs’ controller and storage instances

Identifier Instance Architecture unit
Src_Storage, Main Memory
CPO01 Dst_Storage MAPPERMss
DMA _Controller, MAPPERpMA
CP02 Src_Storage, MAPPERMss
Dst_Storage INTLvss
DMA _Controller, INTLpMA
CPO03 Src_Storage, INTLuss
Dst_Storage FEPuss
DMA _Controllers, FEPpMma
CP04 Src_Storages, FEPwumss
Dst_Storages ADAIFvss




Table 2. The mapping of the CPs’ transfer instances

Identifier| Transfer Transfer Transfer Transfer
instance 1 instance 2 instance 3 instance 4
CPO01 Main Bus Main Bus
Main Bridge Main Bridge
Crossbar Crossbar
MAPPER Bridge| MAPPER Bridge
MAPPER Bus |MAPPER Bus
CP02 Main Bus MAPPER Bus |INTL Bus MAPPER Bus
Main Bridge INTL Bridge MAPPER Bridge
Crossbar Crossbar Crossbar
MAPPER Bridge MAPPER Bridge|Main Bridge
MAPPER Bus MAPPER Bus |Main Bus
CPO03 Main Bus INTL Bus FEP Bus INTL Bus
Main Bridge FEP Bridge INTL Bridge
Crossbar Crossbar Crossbar
INTL Bridge INTL Bridge Main Bridge
INTL Bus INTL Bus Main Bus
CPo04 Main Bus FEP Bus FEP Bus FEP Bus
Main Bridge FEP Bridge FEP Bridge
Crossbar Crossbar Crossbar
FEP Bridge ADATF Bridge |Main Bridge
FEP Bus ADAIF Bus Main Bus

4 A comparison between Design Space Exploration in
the Y-chart and in the ¥-chart

In this subsection we compare the design of the ZigBee transmitter described so
far with a design of the same system conducted in the version of TTool/DIPLO-
DOCUS, previous to our contributions, that was based on the Y-chart approach.
In order to circumvent the communication mismatch in TTool/DIPLODOCUS,
the Y-chart approach results in the methodology depicted in Fig. 10, as opposed
to the ideal design flow of Fig. 1. Once an application (step 1) and architecture
(step 2) models are available, the processing tasks are mapped (step 3) onto the
processing units of the platform. In this phase, also the data channels of the
application model are mapped onto the memory units to provide information
about where the data are read from and/or written to. In Fig. 10 we called this
model Partial mapping model. Next, a second model for the system functional-
ity is created, step 4, from the initial application model (step 1) and from the
Computations mapping model (step 3). We called this Hybrid application model
to distinguish it from the initial application model that we called Pure applica-
tion model as it does not contain platform-dependent information. Indeed, the
Hybrid application model is an instance of the Pure application model, where
additional tasks are added between the processing operations, in order to capture



the communication protocols and patterns of the platform. These communica-
tion tasks are added when one or more communication mismatches at step 3
prevent the creation of a unique mapping model. For the case study described
in this chapter, Fig. 11 shows the hybrid application model where dedicated
tasks (i.e., DMAmapper, DMA_INTL, DMA_FEP) have been added to model
the DMA transfers. In Fig. 11, the memory copy transfer between tasks X_Source
and X_Bits2Symbol does not need to be modeled via a dedicated task as it does
not correspond to a communication mismatch between the application MoC and
the architecture MoA. The data transfer to the sink operation (DMA_FEP) is
modeled as a single task, instead of two separate transfer operations, in order
not to force the scheduling of operations CWP_I and CWP_Q.

From the Hybrid application model the tasks dedicated to capture communica-
tions and their data channels are mapped, step 5 in Fig. 10. This results into
a second mapping model, called Complete mapping model that is then used to
perform Design Space Exploration (step 6 in Fig. 10).
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Fig. 10. Design in the version of TTool/DIPLODOCUS based on the Y-chart. Com-
munications are designed in the Hybrid application model, (4), after mapping the
computations in the Pure application model (1)

As described above, to cope with the communication mismatches the user
is forced to decouple the mapping step in two separate phases, one dedicated
to the mapping of computations (step 3 in Fig. 10) and the second one dedi-
cated to the mapping of communications (step 5 in Fig. 10). As a consequence of
this decoupling, two additional models, i.e., the Complete mapping and the Hy-
brid application, are added to the design flow. On one hand, in terms of Design
Space Exploration, this decoupling limits the degree of freedom that a designer
has when it comes to evaluate the impact of computations and communications.
In fact, in the Partial mapping model (step 3 in Fig. 10) only the charge of the
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Fig. 11. The TTool/DIPLODOCUS Hybrid application model of the ZigBee transmit-
ter

processing units can be evaluated. On the contrary, the exploration of design
alternatives in the Complete mapping model, step 5, is limited by the fact that
communications have been modeled at step 4 in Fig. 10 depending on the map-
ping of computations. Therefore to evaluate alternate communication schemes, a
user has to first change the mapping of the processing operations and then adapt
the hybrid application model at step 4 in Fig. 10. This results into a tedious and
error-prone cycle of iterations between DSE and modeling at a level (steps 3-5)
where there is no separation of concerns between the functionality of the system
and the platform.

On the other hand, in terms of design productivity, in the design based on the
Y-chart, 5 models (steps 1-5 in Fig. 10) are eligible for modifications after the
evaluation of the DSE phase. On the contrary, when the design is conducted
in the frame of the W-chart approach, only 3 models (application, architecture
and mapping) are eligible for modifications. In fact, Communications Patterns
are instantiated from a library and therefore are not eligible for modifications
as they are created at mapping time. Moreover, evaluating the impact of both
computations and communication protocols only requires to change the mapping
of processing functions and Communication Patterns.



4.1 Quantitative analysis

Equation 12 provides a quantitative evaluation of the development time that is
saved, at mapping phase, in the TTool/DIPLODOCUS implementation of the
W-chart (Fig. 2), with respect to the implementation of the Y-chart approach
(Fig. 10). The gain between the mapping times of the two approaches is ex-
pressed as a function of tp1oa™?P the time required to map a block, tpiocc ™18
the time required to model a block, n the number of computation blocks and m
the number of communication blocks in a design. Equation 12 is based on the
following symplifying assumptions: (i) the time required to map a Communica-
tion Pattern is equal to the time required to map communications in the Hybrid
application model (step 4, Fig. 10); (ii) the time required to map/model a block
in the Hybrid application model is constant.

This evaluation is based on the following mathematical analysis. Equation 3
expresses the time spent in the mapping phase of the Y-chart implementation
of TTool/DIPLODOCUS in Fig. 10.

ma ma modelin, ma
tychart b= tcomp P4 tHybrid &+ tHybrid P (3)

where:

— teomp P is the time spent to map computations, step 3 in Fig. 10.

— tHybridmOde“ng is the time spent to create the Hybrid application model, step
4 in Fig. 10.

— tHybrid P is the time spent to map the blocks representing communication
protocols and patterns in the Hybrid application model, step 5 in Fig. 10.

Equation 4 expresses the time spent in the mapping phase of the ¥-chart
(step 2 in Fig. 2) implementation of TTool/DIPLODOCUS. We underline here
that there is no difference between the generic approach of Fig. 2 and its im-
plementation, as opposed to the ideal scenario of the Y-chart in Fig. 1 and its
implementation in Fig. 10.

thhartmap = tcompmap + tCPsmap (4)
where:
— teomp P is the time spent to map computations.

— tops™?P is the time spent to map Communication Patterns.

The absolute gain is defined as the difference between the mapping time spent
in the Y-chart and in the W-chart, as displayed by equations 5 and 6.

ma; ma; ma
AP = tlI/Chart P_ thhart P (5)

deli
AP = tCPsmap + tcompmap - tHybridmO e — tHybridmap - tcompmap (6)



To simplify equation 6, we assume that the time spent to map Communication
Patterns is equal to the time spent to map the blocks that are added to model
communication protocols and patterns in the Hybrid application model. This
results into equations 7 and 8.

Apmap — *tHybridmOdenng (7)

ap _

ma m modelin
tJIChart P thhart - _tHybrid & (8)

From equation 8, the relative gain in terms of mapping time is computed as the
ration between the single mapping times spent in the two different approaches,

equation 9.

twehart ™™ | trybria ™04 )
thhartmap thhartmap
From equation 3, we can express tHybridmOde““g and tychart™?P in terms of the
number of computation blocks n, of the number of communication blocks m, of
the time taken to model a block tpioa ™8 and of the time taken to map a

block tpiock™?P, as expressed in equations 10 and 11.

modelin modeling
tHybrid & = nitpiock & (10)

ma ma modelin, ma
tychart P = tcomp P4 tHybrid &+ tHybrid P

i
= Ntplock ™ + (1 + M) thiock "8 + mitpioa ™

1)
deli (
= thlock P (n+m) + thlock O 8 (n 4+ M)
= (tblock ™ M8 #1100 ™P) (0 + m)
deli deli
twchart 0 1 Uiybria "0CE 1 Niblock 7 e (12)
thhartmap tYChartmap (tblockmOdelmg + tblockmap) (n + m)

We measured the time taken to map and model a block in TTool/DIPLODOCUS
and assigned a value to tpioac ™ of 6 seconds and to tpjoc ™18 of 60 seconds.
Substituting these values and the total number of computation and communica-
tion blocks for the ZigBee transmitter of Fig. 11 (n = 10, m = 3) to equation 12
results into a gain, for the ¥-chart approach, of 30%.
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